
ptg

VISITOR 331

VISITOR Object Behavioral

Intent
Represent an operation to be performed on the elements of an object structure. Vis-
itor lets you define a new operation without changing the classes of the elements
on which it operates.

Motivation
Consider a compiler that represents programs as abstract syntax trees. It will need
to perform operations on abstract syntax trees for "static semantic" analyses like
checking that all variables are defined. It will also need to generate code. So it might
define operations for type-checking, code optimization, flow analysis, checking
for variables being assigned values before they're used, and so on. Moreover,
we could use the abstract syntax trees for pretty-printing, program restructuring,
code instrumentation, and computing various metrics of a program.

Most of these operations will need to treat nodes that represent assignment state-
ments differently from nodes that represent variables or arithmetic expressions.
Hence there will be one class for assignment statements, another for variable
accesses, another for arithmetic expressions, and so on. The set of node classes
depends on the language being compiled, of course, but it doesn't change much
for a given language.

This diagram shows part of the Node class hierarchy. The problem here is that
distributing all these operations across the various node classes leads to a system
that's hard to understand, maintain, and change. It will be confusing to have type-
checking code mixed with pretty-printing code or flow analysis code. Moreover,
adding a new operation usually requires recompiling all of these classes. It would



ptg

332 BEHAVIORAL PATTERNS CHAPTER 5

be better if each new operation could be added separately, and the node classes
were independent of the operations that apply to them.

We can have both by packaging related operations from each class in a separate
object, called a visitor, and passing it to elements of the abstract syntax tree as it's
traversed. When an element "accepts" the visitor, it sends a request to the visitor
that encodes the element's class. It also includes the element as an argument. The
visitor will then execute the operation for that element—the operation that used
to be in the class of the element.

For example, a compiler that didn't use visitors might type-check a procedure
by calling the TypeCheck operation on its abstract syntax tree. Each of the nodes
would implement TypeCheck by calling TypeCheck on its components (see the
preceding class diagram). If the compiler type-checked a procedure using visitors,
then it would create a TypeCheckingVisitor object and call the Accept operation
on the abstract syntax tree with that object as an argument. Each of the nodes
would implement Accept by calling back on the visitor: an assignment node
calls VisitAssignment operation on the visitor, while a variable reference calls
VisitVariableReference. What used to be the TypeCheck operation in class Assign-
mentNode is now the VisitAssignment operation on TypeCheckingVisitor.

To make visitors work for more than just type-checking, we need an abstract parent
class NodeVisitor for all visitors of an abstract syntax tree. NodeVisitor must
declare an operation for each node class. An application that needs to compute
program metrics will define new subclasses of NodeVisitor and will no longer 
need to add application-specific code to the node classes. The Visitor pattern
encapsulates the operations for each compilation phase in a Visitor associated
with that phase.



ptg

VISITOR 333

With the Visitor pattern, you define two class hierarchies: one for the elements
being operated on (the Node hierarchy) and one for the visitors that define op-
erations on the elements (the Node Visitor hierarchy). You create a new operation
by adding a new subclass to the visitor class hierarchy. As long as the grammar
that the compiler accepts doesn't change (that is, we don't have to add new Node 
subclasses), we can add new functionality simply by defining new Node Visitor
subclasses.

Applicability
Use the Visitor pattern when

• an object structure contains many classes of objects with differing interfaces,
and you want to perform operations on these objects that depend on their
concrete classes.

• many distinct and unrelated operations need to be performed on objects in an
object structure, and you want to avoid "polluting" their classes with these
operations. Visitor lets you keep related operations together by defining them
in one class. When the object structure is shared by many applications, use
Visitor to put operations in just those applications that need them.

• the classes defining the object structure rarely change, but you often want
to define new operations over the structure. Changing the object structure
classes requires redefining the interface to all visitors, which is potentially
costly. If the object structure classes change often, then it's probably better to
define the operations in those classes.



ptg

334 BEHAVIORAL PATTERNS

Structure

CHAPTER 5

Participants
• Visitor (NodeVisitor)

- declares a Visit operation for each class of ConcreteElement in the object
structure. The operation's name and signature identifies the class that sends
the Visit request to the visitor. That lets the visitor determine the concrete
class of the element being visited. Then the visitor can access the element
directly through its particular interface.

• Concrete Visitor (TypeCheckingVisitor)

- implements each operation declared by Visitor. Each operation implements
a fragment of the algorithm defined for the corresponding class of object
in the structure. ConcreteVisitor provides the context for the algorithm
and stores its local state. This state often accumulates results during the
traversal of the structure.

• Element (Node)

- defines an Accept operation that takes a visitor as an argument.



ptg

VISITOR 335

• ConcreteElement (AssignmentNode,VariableRefNode)

- implements an Accept operation that takes a visitor as an argument.

• ObjectStructure (Program)

- can enumerate its elements.

- may provide a high-level interface to allow the visitor to visit its elements.

- may either be a composite (see Composite (163)) or a collection such as a
list or a set.

Collaborations
• A client that uses the Visitor pattern must create a ConcreteVisitor object and

then traverse the object structure, visiting each element with the visitor.
• When an element is visited, it calls the Visitor operation that corresponds to

its class. The element supplies itself as an argument to this operation to let the
visitor access its state, if necessary.
The following interaction diagram illustrates the collaborations between an
object structure, a visitor, and two elements:

Consequences
Some of the benefits and liabilities of the Visitor pattern are as follows:

1. Visitor makes adding new operations easy. Visitors make it easy to add operations
that depend on the components of complex objects. You can define a new
operation over an object structure simply by adding a new visitor. In contrast,
if you spread functionality over many classes, then you must change each
class to define a new operation.

2. A visitor gathers related operations and separates unrelated ones. Related behav-
ior isn't spread over the classes defining the object structure; it's localized
in a visitor. Unrelated sets of behavior are partitioned in their own visitor



ptg

336 BEHAVIORAL PATTERNS CHAPTER 5

subclasses. That simplifies both the classes defining the elements and the al-
gorithms defined in the visitors. Any algorithm-specific data structures can
be hidden in the visitor.

3. Adding new ConcreteElement classes is hard. The Visitor pattern makes it hard
to add new subclasses of Element. Each new ConcreteElement gives rise to
a new abstract operation on Visitor and a corresponding implementation
in every ConcreteVisitor class. Sometimes a default implementation can be
provided in Visitor that can be inherited by most of the Concrete Visitors, but
this is the exception rather than the rule.
So the key consideration in applying the Visitor pattern is whether you are
mostly likely to change the algorithm applied over an object structure or
the classes of objects that make up the structure. The Visitor class hierarchy
can be difficult to maintain when new ConcreteElement classes are added
frequently. In such cases, it's probably easier just to define operations on the
classes that make up the structure. If the Element class hierarchy is stable,
but you are continually adding operations or changing algorithms, then the
Visitor pattern will help you manage the changes.

4. Visiting across class hierarchies. An iterator (see Iterator (257)) can visit the
objects in a structure as it traverses them by calling their operations. But an
iterator can't work across object structures with different types of elements.
For example, the Iterator interface defined on page 263 can access only objects
of type Item:

template <class Item>
class Iterator {

// . . .
Item Current l tem() const;

};

This implies that all elements the iterator can visit have a common parent
class Item.
Visitor does not have this restriction. It can visit objects that don't have a
common parent class. You can add any type of object to a Visitor interface.
For example, in

class Visitor {
public:

// . . . 
void VisitMyType(MyType*);
void VisitYourType(YourType*);

};

MyType and YourType do not have to be related through inheritance at all.

5. Accumulating state. Visitors can accumulate state as they visit each element
in the object structure. Without a visitor, this state would be passed as extra
arguments to the operations that perform the traversal, or they might appear
as global variables.



ptg

VISITOR 337

6. Breaking encapsulation. Visitor's approach assumes that the ConcreteElement
interface is powerful enough to let visitors do their job. As a result, the pattern
often forces you to provide public operations that access an element's internal
state, which may compromise its encapsulation.

Implementation
Each object structure will have an associated Visitor class. This abstract visitor
class declares a VisitConcreteElement operation for each class of ConcreteEle-
ment defining the object structure. Each Visit operation on the Visitor declares
its argument to be a particular ConcreteElement, allowing the Visitor to access 
the interface of the ConcreteElement directly. Concrete Visitor classes override
each Visit operation to implement visitor-specific behavior for the corresponding
ConcreteElement class.

The Visitor class would be declared like this in C++:

class Visitor {
public:

virtual void VisitElementA(ElementA*);
virtual void VisitElementB(ElementB*);

// and so on for other concrete elements
protected:

Visitor();
};

Each class of ConcreteElement implements an Accept operation that calls the
matching Visit. . . operation on the visitor for that ConcreteElement. Thus the 
operation that ends up getting called depends on both the class of the element
and the class of the visitor.10

The concrete elements are declared as

class Element {
public:

virtual ~Element(); 
virtual void Accept(Visitors) = 0;

protected:
Element();

};

10 We could use function overloading to give these operations the same simple name, like Visit, since

the operations are already differentiated by the parameter they're passed. There are pros and cons to such 
overloading. On the one hand, it reinforces the fact that each operation involves the same analysis, albeit on
a different argument. On the other hand, that might make what's going on at the call site less obvious to
someone reading the code. It really boils down to whether you believe function overloading is good or not.



ptg

338 BEHAVIORAL PATTERNS CHAPTER 5

class ElementA : public Element {
public:

ElementA(); 
virtual void Accept(Visitor& v) { v.VisitElementA(this); }

};

class Elements : public Element {
public:

Elements(); 
virtual void Accept(Visitors v) { v.VisitElementB(this); }

};

A CompositeElement class might implement Accept like this:

class CompositeElement : public Element {
public:

virtual void Accept(Visitor^);
private:

List<Element.*>* __children;
};

void CompositeElement::Accept (Visitork v) {
ListIterator<Element*> i(_children);

for (i. First (); 1 i . IsDone () ; i.NextO) {
i.Currentltem()->Accept(v);

}
v.VisitCompositeElement(this);

}

Here are two other implementation issues that arise when you apply the Visitor
pattern:

1. Double dispatch. Effectively, the Visitor pattern lets you add operations to
classes without changing them. Visitor achieves this by using a technique
called double-dispatch. It's a well-known technique. In fact, some program-
ming languages support it directly (CLOS, for example). Languages like C++
and Smalltalk support single-dispatch.
In single-dispatch languages, two criteria determine which operation will
fulfill a request: the name of the request and the type of receiver. For ex-
ample, the operation that a GenerateCode request will call depends on the
type of node object you ask. In C++, calling Generat eCode on an instance of
VariableRef Node will call VariableRef Node: : GenerateCode (which
generates code for a variable reference). Calling GenerateCode on an
AssignmentNode will call AssignmentNode: : GenerateCode (which
will generate code for an assignment). The operation that gets executed
depends both on the kind of request and the type of the receiver.
"Double-dispatch" simply means the operation that gets executed depends
on the kind of request and the types of two receivers. Accept is a double-
dispatch operation. Its meaning depends on two types: the Visitor's and the



ptg

VISITOR 339

Element's. Double-dispatching lets visitors request different operations on
each class of element.11

This is the key to the Visitor pattern: The operation that gets executed de-
pends on both the type of Visitor and the type of Element it visits. Instead of
binding operations statically into the Element interface, you can consolidate
the operations in a Visitor and use Accept to do the binding at run-time. Ex-
tending the Element interface amounts to defining one new Visitor subclass
rather than many new Element subclasses.

2. Who is responsible for traversing the object structure? A visitor must visit each
element of the object structure. The question is, how does it get there? We can
put responsibility for traversal in any of three places: in the object structure,
in the visitor, or in a separate iterator object (see Iterator (257)).
Often the object structure is responsible for iteration. A collection will simply
iterate over its elements, calling the Accept operation on each. A composite
will commonly traverse itself by having each Accept operation traverse the
element's children and call Accept on each of them recursively.
Another solution is to use an iterator to visit the elements. In C++, you could
use either an internal or external iterator, depending on what is available
and what is most efficient. In Smalltalk, you usually use an internal iterator
using do: and a block. Since internal iterators are implemented by the object
structure, using an internal iterator is a lot like making the object structure
responsible for iteration. The main difference is that an internal iterator will
not cause double-dispatching—it will call an operation on the visitor with
an element as an argument as opposed to calling an operation on the element
with the visitor as an argument. But it's easy to use the Visitor pattern with 
an internal iterator if the operation on the visitor simply calls the operation
on the element without recursing.
You could even put the traversal algorithm in the visitor, although you'll end
up duplicating the traversal code in each Concrete Visitor for each aggregate
ConcreteElement. The main reason to put the traversal strategy in the visitor
is to implement a particularly complex traversal, one that depends on the
results of the operations on the object structure. We'll give an example of
such a case in the Sample Code.

Sample Code
Because visitors are usually associated with composites, we'll use the Equipment
classes defined in the Sample Code of Composite (163) to illustrate the Visitor
pattern. We will use Visitor to define operations for computing the inventory of
materials and the total cost for a piece of equipment. The Equipment classes are

11 If we can have double-dispatch, then why not triple or quadruple, or any other number? Actually, double-

dispatch is just a special case of multiple dispatch, in which the operation is chosen based on any number 
of types. (CLOS actually supports multiple dispatch.) Languages that support double- or multiple dispatch
lessen the need for the Visitor pattern.



ptg

340 BEHAVIORAL PATTERNS CHAPTER 5

so simple that using Visitor isn't really necessary, but they make it easy to see
what's involved in implementing the pattern.

Here again is the Equipment class from Composite (163). We've augmented it
with an Accept operation to let it work with a visitor.

class Equipment {
public:

virtual ~Equipment();

const char* Name() { return _name; }

virtual Watt Power(); 
virtual Currency NetPrice();
virtual Currency DiscountPrice();

virtual void Accept(EquipmentVisitork);
protected:

Equipment(const char*);
private:

const char* _name;
};

The Equipment operations return the attributes of a piece of equipment, such as
its power consumption and cost. Subclasses redefine these operations appropri-
ately for specific types of equipment (e.g., a chassis, drives, and planar boards).

The abstract class for all visitors of equipment has a virtual function for each
subclass of equipment, as shown next. All of the virtual functions do nothing by
default.

class EquipmentVisitor {
public:

virtual ~EquipmentVisitor();

virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*); 
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*);

// and so on for other concrete subclasses of Equipment
protected:

tquipmentvisitor();
};

Equipment subclasses define Accept in basically the same way: It calls the
EquipmentVisitor operation that corresponds to the class that received the
Accept request, like this:

void FloppyDisk::Accept (EquipmentVisitork visitor) {
visitor.VisitFloppyDisk(this);

}



ptg

VISITOR 341

Equipment that contains other equipment (in particular, subclasses of Com-
positeEquipment in the Composite pattern) implements Accept by iterating
over its children and calling Accept on each of them. Then it calls the Visit
operation as usual. For example, Chassis : : Accept could traverse all the parts
in the chassis as follows:

void Chassis::Accept (EquipmentVisitor& visitor) {
for (

ListIterator<Equipment*> i(_parts);
!i.IsDone();
i.Next()

) {
i.Currentltem()->Accept(visitor);

}
visitor.VisitChassis(this);

}

Subclasses of EquipmentVisitor define particular algorithms over the equip-
ment structure. The Pr i c ingVi s i t or computes the cost of the equipment struc-
ture. It computes the net price of all simple equipment (e.g., floppies) and the
discount price of all composite equipment (e.g., chassis and buses).

class PricingVisitor : public EquipmentVisitor {
public:

PricingVisitor();

Currency& GetTotalPrice();

virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*); 
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*); 
// . . .

private:
Currency _total;

};

void PricingVisitor::VisitFloppyDisk (FloppyDisk* e) {
_total += e->NetPrice();

}

void PricingVisitor::VisitChassis (Chassis* e) {
_total +- e->DiscountPrice();

}

PricingVisitor will compute the total cost of all nodes in the equipment
structure. Note that PricingVisitor chooses the appropriate pricing policy
for a class of equipment by dispatching to the corresponding member function.
What's more, we can change the pricing policy of an equipment structure just by
changing the PricingVisitor class.



ptg

342 BEHAVIORAL PATTERNS CHAPTERS

We can define a visitor for computing inventory like this:

class Inventory-Visitor : public EquipmentVisitor {
public:

InventoryVisitor();

Inventory^ Getlnventory();

virtual void VisitFloppyDisk(FloppyDisk*);
virtual void VisitCard(Card*); 
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*); 
// . . .

private:
Inventory _inventory;

};

The InventoryVisitor accumulates the totals for each type of equipment in
the object structure. InventoryVisitor uses an Inventory class that defines
an interface for adding equipment (which we won't bother defining here).

void InventoryVisitor::VisitFloppyDisk (FloppyDisk* e) {
_inventory.Accumulate(e);

}

void InventoryVisitor::VisitChassis (Chassis* e) {
_inventory.Accumulate(e);

}

Here's how we can use an InventoryVisitor on an equipment structure:

Equipment* component;
InventoryVisitor visitor;

component->Accept(visitor);
cout « "Inventory "

« component->Name() 
« visitor.Getlnventory();

Now we'll show how to implement the Smalltalk example from the Interpreter
pattern (see page 248) with the Visitor pattern. Like the previous example, this
one is so small that Visitor probably won't buy us much, but it provides a good
illustration of how to use the pattern. Further, it illustrates a situation in which
iteration is the visitor's responsibility.

The object structure (regular expressions) is made of four classes, and all of
them have an accept: method that takes the visitor as an argument. In class
SequenceExpression, the accept: method is



ptg

VISITOR 343

accept: aVisitor 
aVisitor visitSequence: self

In class RepeatExpression, the accept: method sends the visitRepeat:
message. In class AlternationExpression, it sends the visitAlterna-
tion: message. In class Literal-Expression, it sends the visitLiteral:
message.

The four classes also must have accessing functions that the visitor can use.
For SequenceExpression these are expressionl and expression2; for
AlternationExpression these are alternativel and alternative2; for
Repeat Express ion it is repet it ion; and for Lit eralExpress ion these are
components.

The Concrete Visitor class is REMatchingVisitor. It is responsible for the tra-
versal because its traversal algorithm is irregular. The biggest irregularity is
that a RepeatExpression will repeatedly traverse its component. The class
REMatchingVisitor has an instance variable inputState. Its methods are
essentially the same as the match: methods of the expression classes in the In-
terpreter pattern except they replace the argument named inputState with the
expression node being matched. However, they still return the set of streams that
the expression would match to identify the current state.

visitSequence: sequenceExp 
inputState := sequenceExp expressionl accept: self.
sequenceExp expression2 accept: self.

visitRepeat: repeatExp 
! finalState I 
finalState := inputState copy.
[inputState isEmpty]

whileFalse:
[inputState := repeatExp repetition accept: self.
finalState addAll: inputState].

" finalState

visitAlternation: alternateExp
I finalState originalState I 
originalState := inputState. 
finalState := alternateExp alternativel accept: self.
inputState := originalState. 
finalState addAll: (alternateExp alternative2 accept: self).
~ finalState



ptg

344 BEHAVIORAL PATTERNS CHAPTER 5

visitLiteral: literalExp
I finalState tStream I 
finalState := Set new.
inputState

do: 
[:stream I tStream := stream copy.

(tStream nextAvailable:
literalExp components size

) = literalExp components 
ifTrue: [finalState add: tStream]

] .
" finalState

Known Uses
The Smalltalk-80 compiler has a Visitor class called ProgramNodeEnumerator.
It's used primarily for algorithms that analyze source code. It isn't used for code
generation or pretty-printing, although it could be.

IRIS Inventor [Str931 is a toolkit for developing 3-D graphics applications. Inventor
represents a three-dimensional scene as a hierarchy of nodes, each representing
either a geometric object or an attribute of one. Operations like rendering a scene
or mapping an input event require traversing this hierarchy in different ways.
Inventor does this using visitors called "actions." There are different visitors for
rendering, event handling, searching, filing, and determining bounding boxes.

To make adding new nodes easier, Inventor implements a double-dispatch scheme
for C++. The scheme relies on run-time type information and a two-dimensional
table in which rows represent visitors and columns represent node classes. The
cells store a pointer to the function bound to the visitor and node class.
Mark Linton coined the term "Visitor" in the X Consortium's Fresco Application
Toolkit specification [LP93].

Related Patterns
Composite (163): Visitors can be used to apply an operation over an object structure
defined by the Composite pattern.

Interpreter (243): Visitor may be applied to do the interpretation.


