
Polymorphic Hierarchy
Bobby Woolf

I’ve noticed that at least half the methods I write are not very original. Sure, lots of the methods I write are 
real methods that do real work and have real names that are fairly unique. Yet in the process of that real 
programming, I also write a ton of methods that don’t require much thought. I implement lots of getter and 
setter methods, initialization and instance creation methods, and I write a fair number of methods that 
subimplement methods already defined in a superclass. I’m finding that it is these subimplementor methods
that are the key to polymorphism. Used aggressively and consistently, polymorphic methods lead to 
polymorphic classes and ultimately polymorphic hierarchies.

I’ll discuss what a polymorphic hierarchy is as well as a pattern I call “Template Class.” The top class in a 
polymorphic hierarchy is a Template Class.

Reusing Method Descriptions
Let’s use printOn: as an example. VisualWorks implements printString in Object via 
printOn:. Since Object>>printOn: is generic, I frequently subimplement it in my classes to tell me
not just what class this instance came from but to also provide some clue as to which instance this is. Being
a good corporate citizen, I comment my new implementor of printOn: with a description to give the 
next programmer some clue as to what this method does.

The description in Object>>printOn: says, “Append to the argument aStream a sequence of 
characters that describes the receiver.” Couldn’t have said it better myself. In fact, why should I try? What 
do you think this method does?! Having seen a hundred other implementors of printOn: throughout the 
system, all of which do the same thing, what do you think this one does? My philosophy is to duplicate as 
little effort as possible, so why should I comment a method that’s already been commented elsewhere? 
Instead, I just describe my method by saying, “See superimplementor.” It’s my way for the method to say, 
“Look, I do the same thing my superimplementor does. What else would I do?! If you don’t know what that
is, see the description in the superimplementor.”

Another clue that my implementor of printOn: does the same thing as Object’s is that both 
implementors appear in the same method protocol, printing. The printing protocol in Object says,
“These are all of the printing type things the receiver knows how to do.” By putting my implementor in the 
printing protocol, I’m saying that my method is also used for printing. That’s a good thing since I’m 
subimplimenting a method that is already used for printing. Not only should a subimplementor do the same 
thing as its superimplementor, it should also appear in the same protocol.

One defining implementor
When I’ve written all of the implementors of a message, there’s only one description, and that’s in the 
method in the superclass that defines the hierarchy. This implementor is usually pretty lame; it just returns 
self, or the subclassResponsibility error, or some default implementation that won’t cause 
trouble when subclasses inherit it. But even though the implementation is lame, the method still defines 
what this message does for the whole hierarchy. Thus any subimplementors had better do the same thing; 
their implementations are different, but their purposes are the same. Thus their descriptions are, “See 
superimplementor.”

The same principle applies to the Smalltalk habit of having one method simply call another method that has
almost the same name except for an extra parameter. For example, Object>>changed sends 
changed:; then Object>>changed: sends changed:with:. There is no need to describe the 
purpose of all three of these methods. Once you know what changed:with: does, you know that 
changed and changed: work in the same way except that they use defaults for some of the parameters. 
So my description for Object>>changed would be “See changed:.”; “See changed:with:.” describes 

5/18/1996 05:45:00 PM 1



Polymorphic Hierarchy Bobby Woolf

Object>>changed:. If I subimplemented any of these methods, the description would be “See 
superimplementor.”

Anatomy of a Method Description
So what kinds of immodest boasts and secret confessions end up in a method description anyway?

First of all, I try to avoid rephrasing the method name. Unfortunately, I’ve written many methods like 
productCode whose description says, “Return the code for the receiver’s product.” No, really?! These 
sorts of methods are usually just returning an instance variable’s value, so when I can’t think of anything 
else to say, I describe them with, “Getter.” Ditto for setter methods. Given that you should already know 
what the instance variable does, there’s really not much to say about getter and setter methods.

Second, I try to use the method description to describe the entire method. I generally don’t like to comment 
individual lines of code. It's tempting to do so when I write a line or two of code that is so bizarre that 
another programmer has no chance of understand what he’s looking at. Unfortunately, I’m not going to be 
able to cover this unfortunate blunder by including an equally convoluted comment. Instead, I hide the 
bizarre code in a new method with a descriptive name. The comment I would have included to explain the 
code becomes the method’s description.

Purpose and implementation details
Third, I split my method description into two parts: purpose and implementation details. Purpose explains 
what the method does. I phrase it as, “If you send this message to this object, here’s what’ll happen. This 
method will...” Examples might be, “Sort the receiver’s elements.”, “Read the next item and return it.”, and
“Answer whether the receiver contains errors.” Implementation details is optional. This is my litany of 
excuses for why the code is so strange. Luckily I write reasonably good code most of the time so only a few
of my methods need these explanations.

A method’s purpose is reusable. All of the implementors of a message within a hierarchy had better have 
the same purpose. Thus I only document the message's purpose in the implementor at the top of the 
hierarchy. Other implementors document their purpose with “See superimplementor.”

A method’s implementation details are not reusable. Two implementors of a message should not have the 
same implementation details. If they do, they’re duplicating code.

Thus you can easily split your own method descriptions into purpose and implementation details. To do so, 
separate the commentary that explains what the method does from that which explains how. The what 
commentary is the method’s purpose; it should be the same for every implementor in the hierarchy. The 
how commentary describes the implementation details, so it should be different (or negligible) for every 
implementor. In every implementor except the topmost one, change the purpose comment to “See 
superimplementor” since the purpose is always the same. Add an implementation details comment if 
necessary. As I read other programmers’ method descriptions (such as the vendor code), I mentally perform 
this separation to understand the method better.

Description Reuse for Polymorphism
One of the things that took me a while to learn about Smalltalk is what subclasses are for. To me, each class
was its own packet of implementation detail. Anything two classes had in common was coincidence. The 
way I chose a superclass was to select whichever class would let my class inherit the most stuff “for free.” I
didn’t create hierarchies, just groups of classes.

Now I can’t seem to think about a class without also needing to understand its superclasses. I don’t use 
class browsers anymore, I use hierarchy browsers. Superclasses are like a linear set of mixins and I want to 
see what’s being mixed into this class. I find that trying to understand a class without knowing its 
superclasses is like hearing a private joke without knowing the context it came from.

When I create a subclass, I don’t just think about how the class should work, I think about how it should 
differ from its superclass. The superclass should already do pretty much everything the subclass needs to 

5/18/1996 05:45:00 PM 2



Polymorphic Hierarchy Bobby Woolf

know how to do (although the subclass may add additional behavior). The problem is that the superclass 
knows what to do but not how to do it. The subclass implements the how.

Consider the Collection hierarchy. A Collection can accept requests to add and remove elements, 
iterate over them, and answer how many elements it has. But a Collection does not know how to fulfill 
these requests. The how depends on the implementation; is the collection a list, a tree, a hash table, or 
what? Subclasses of Collection implement the details of how. Set (a hash table) implements add:, 
remove:, do:, and size one way. OrderedCollection (a list) implements them another way. 
Collection defines what a collection can do; the subclasses define how that gets done.

How do I make sure that the subclass does the same thing the superclass does? Each method that the 
subclass subimplements (extends or overrides from the superclass) has to do the same thing as the method 
in the superclass does. The subimplementor doesn’t do it the same way, of course, but it should produce the
same result. In other words, the subimplementor should have the same purpose as the superimplementor.

Purpose is polymorphic
When all implementors in a hierarchy have the same purpose, they’re polymorphic. When all of the 
methods that subclasses subimplement are polymorphic with their inherited versions, the hierarchy is 
polymorphic. This means that a collaborating object can use one instance of the hierarchy just as easily as 
another instance. Because all of the instances behave the same, one works just as well as another.

For example, consider an object (Employee) that should maintain a list of things to do (toDoList). 
How should the object sort the list, by priority or first-come-first-serve? Who knows? But you know it will 
be some sort of Collection, probably either an OrderedCollection or a SortedCollection. 
So however you eventually decide to implement the toDoList, you already know what its behavior is. 
You can add a task to be done (add:), remove a task that’s been done (remove:), ask how many tasks 
there are left to do (size), and ask for the next one to do (first). Later you can work out the more 
domain-specific details of how the list should be ordered and use an OrderedCollection or 
SortedCollection as appropriate.

Defining polymorphism
This definition of polymorphism is more extensive than the ones you usually hear. The sound-bite 
definition I learned was that two methods are polymorphic if their names are the same. This is clearly not 
always true. Think about the messages value and value:. They have lots of implementors, but are those
implementors polymorphic? If they are polymorphic, what do those messages do? That depends on the 
receiver. In a ValueModel, value and value: are accessor (getter and setter) methods. In a block (a 
BlockClosure), value and value: are evaluation methods, clearly not getters and setters. These 
implementors of value and value: have the same name, but they are not polymorphic.

For two methods to be polymorphic, they not only need to have the same name, they must behave the same 
way as well. This means that they not only accept the same number of parameters, but each parameter is of 
the same type in both methods. Both methods must produce the same side effects, such as changing the 
state of the receiver in the same way. And both methods must return the same type of result. Only then are 
the two methods truly polymorphic.

As described earlier, I contend that two classes can be polymorphic. Two polymorphic classes understand 
the same messages and their implementors of those messages are polymorphic. Since the two classes share 
the same interface and behave the same way, they are polymorphic. In practice, two classes often do not 
share the same complete interface, but they do share the same core interface and it is polymorphic. A core 
interface is an interface that several classes share so that they can be used interchangeably. As long as a 
collaborator only uses that core interface, it can use an instance of one class as easily as any other class that
has the core interface.

5/18/1996 05:45:00 PM 3



Polymorphic Hierarchy Bobby Woolf

Making a Hierarchy Polymorphic
This brings me back to my “See superimplementor” method comments. As I got used to commenting my 
methods this way, I got used to thinking of my methods polymorphically, which made me more careful to 
implement them polymorphically. As the methods in my hierarchies became more polymorphic, the 
hierarchies became more polymorphic. As my hierarchies became more polymorphic, they became more 
flexible, reusable, extensible, easier to learn, and all of that other good OO stuff.

The problem comes when there is no superimplementor to see. Sometimes I’m implementing a method and 
I remember that I’ve already implemented another method with the same name. They’re doing the same 
thing, so they have the same purpose. If one of them is a subimplementor of the other, I describe the 
subimplementor with “See superimplementor.” But I can’t do this when they are in peer classes and there is
no superimplementor. When this happens, the code is telling me, “You’re missing a superimplementor.” I 
don’t want to duplicate any effort I can avoid. This includes defining what this message is supposed to do 
in this hierarchy. So I introduce a superimplementor, document the purpose in there, and give it a default 
implementation. Now I can document the subimplementors with “See superimplementor.”

Of course, another problem I sometimes run into is that there’s no superclass to put the superimplementor 
in. Two classes with two supposedly polymorphic implementations of the same message are peer classes 
that have no relationship to each other in the hierarchy. Their first common superclass is something generic 
like ApplicationModel or Object. I’m definitely not going to add this domain-specific message to 
such a general class, as though all subclass should support this message, so what can I do? If these two 
implementors are really polymorphic, then their classes are probably going to need to be polymorphic as 
well. If so, the most maintainable way to make two classes polymorphic is to put them in the same 
hierarchy and make the whole hierarchy polymorphic. Since this hierarchy does not exist, I need to create a
new abstract class that describes the polymorphic behavior of this hierarchy, then subclass my two concrete
classes off of it. The hierarchy now exists, so now I can add the superimplementor to the superclass. The 
purpose of the message goes in the superimplementor and the subimplementors just say “See 
superimplementor.”

The Template Class Pattern
The abstract class I introduced to make the hierarchy polymorphic is what I call a “Template Class.” 
Template Class is a pattern that creates polymorphic hierarchies. It is similar to the Template Method 
pattern.1 Whereas a Template Method defines the interface for a method while deferring the details to 
subclasses, a Template Class defines the interface for a class—a new type—while deferring the 
implementation details to subclasses. This leads to a whole hierarchy of classes that are polymorphic with 
each other. A Template Class is typically full of Template Methods.

The ValueModel hierarchy
The ValueModel hierarchy in VisualWorks is a good example of a polymorphic hierarchy. The class 
ValueModel defines the hierarchy by saying that all instances will understand messages like value, 
value:, and onChangeSend:to:. All subclasses implement these messages according to how each 
class works. A class will inherit some of the implementations if they already work appropriately.

Because all ValueModel subclasses support this core interface, a collaborator can use a ValueModel 
without having to worry about what subclass the instance came from. Whether the instance is a 
ValueHolder, an AspectAdaptor, or a TypeConverter, it supports the core value interface. 
This is the benefit of polymorphism at the class level. Because the hierarchy is polymorphic, you can use 
any class in the hierarchy as easily as any other and the collaborating code (such as the value-based 
widgets) will never know the difference.

1 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995, ISBN 0-201-63361-2; 
http://www.aw.com/cp/Gamma.html.

5/18/1996 05:45:00 PM 4



Polymorphic Hierarchy Bobby Woolf

Most of the hierarchies we know and love–Collection, Magnitude, ArithmeticValue/Number, 
Boolean, String, etc.–are polymorphic hierarchies. This is no coincidence. The fact that we know them
so well and employ them so often is in large part because their polymorphism makes them so easy to use.

Conclusion
To summarize:

· A lot of methods not only have the same name, they do the same thing. This is where polymorphism 
comes from.

· For two methods to be polymorphic, they need to have not only the same name, but also the same 
parameter types, the same side-effects, and the same return type.

· Two methods that are polymorphic should appear in the same method protocol.

· A method description documents two things: the purpose and the implementation details.

· For two methods to be polymorphic, they need to have the same purpose. They should not have the 
same implementation details.

· For two classes to be polymorphic, they need to share the same core interface of polymorphic 
messages.

· A collaborator can use the two classes interchangeably if it only uses messages in their core interface.

· For a hierarchy to be polymorphic, all of its classes must share the same polymorphic core interface.

· The polymorphic hierarchy and its core interface is defined by an abstract class. I call an abstract class 
which fulfills this role a Template Class.

· A polymorphic hierarchy encapsulates code that is highly reusable, flexible, extensible, and just plain 
good OO.

To learn more about implementing your own polymorphic hierarchies, I suggest reading the paper 
“Reusability Through Self-Encapsulation” by Ken Auer.2 It is a pattern language that describes how to 
develop a class hierarchy that achieves reuse via inheritance while maintaining each class’ encapsulation. 
Although polymorphism is not an explicit goal of the pattern language, hierarchies developed this way tend
to be polymorphic ones.

--------------------

Bobby Woolf is a Senior Member of Technical Staff at Knowledge Systems Corp. in Cary, North Carolina. 
He mentors clients in the use of VisualWorks, ENVY, and design patterns. He welcomes your comments at 
woolf@acm.org or at http://www.ksccary.com.

--------------------

The key to polymorphism is separate methods that not only have the same name but also do the same thing.
However, polymorphic methods are not enough. They must be clustered together into polymorphic classes 
that form polymorphic hierarchies. Bobby explores how polymorphic hierarchies emerge during the 
development process.

--------------------

The description for a polymorphic subimplementor is, “See superimplementor.”

A method description has two parts: purpose and implementation details.

A method’s purpose is reusable; its implementation details is not.

2 Coplein, James and Douglas Schmidt, Editors. Pattern Languages of Program Design. Addison-Wesley, 
Reading, MA, 1995, ISBN 0-201-60734-4; 
http://heg-school.aw.com/cseng/authors/coplien/patternlang/patternlang.html.

5/18/1996 05:45:00 PM 5



Polymorphic Hierarchy Bobby Woolf

The “See superimplementor” description makes developers think polymorphically.

5/18/1996 05:45:00 PM 6


	Reusing Method Descriptions
	One defining implementor

	Anatomy of a Method Description
	Purpose and implementation details

	Description Reuse for Polymorphism
	Purpose is polymorphic
	Defining polymorphism

	Making a Hierarchy Polymorphic
	The Template Class Pattern
	The ValueModel hierarchy

	Conclusion

