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Introduction

Engineering—The Practical Application of
Science
Software development is a process of discovery and exploration; therefore,
to succeed at it, software engineers need to become experts at learning.
Humanity’s best approach to learning is science, so we need to adopt the
techniques and strategies of science and apply them to our problems. This is
often misunderstood to mean that we need to become physicists measuring
things to unreasonable, in the context of software, levels of precision.
Engineering is more pragmatic than that.
What I mean when I say we should apply the techniques and strategies of
science is that we should apply some pretty basic, but nevertheless
extremely important, ideas.
The scientific method that most of us learned about in school is described
by Wikipedia as:

Characterize: Make an observation of the current state.

Hypothesize: Create a description, a theory that may explain your
observation.

Predict: Make a prediction based on your hypothesis.

Experiment: Test your prediction.

When we organize our thinking this way and start to make progress on the
basis of many small, informal experiments, we begin to limit our risk of



jumping to inappropriate conclusions and end up doing a better job.
If we start to think in terms of controlling the variables in our experiments
so that we can achieve more consistency and reliability in our results, this
leads us in the direction of more deterministic systems and code. If we start
to think in terms of being skeptical about our ideas and explore how we
could falsify them, we can identify, and then eliminate, bad ideas more
quickly and make progress much faster.
This book is deeply grounded in a practical, pragmatic approach to solving
problems in software, based on an informal adoption of basic scientific
principles, in other words, engineering!

What Is Software Engineering?
My working definition for software engineering that underpins the ideas in
this book is this:

Software engineering is the application of an empirical, scientific approach to finding
efficient, economic solutions to practical problems in software.

The adoption of an engineering approach to software development is
important for two main reasons. First, software development is always an
exercise in discovery and learning, and second, if our aim is to be
“efficient” and “economic,” then our ability to learn must be sustainable.
This means that we must manage the complexity of the systems that we
create in ways that maintain our ability to learn new things and adapt to
them.
So, we must become experts at learning and experts at managing
complexity.
There are five techniques that form the roots of this focus on learning.
Specifically, to become experts at learning, we need the following:

Iteration

Feedback

Incrementalism



Experimentation

Empiricism

This is an evolutionary approach to the creation of complex systems.
Complex systems don’t spring fully formed from our imaginations. They
are the product of many small steps, where we try out our ideas and react to
success and failure along the way. These are the tools that allow us to
accomplish that exploration and discovery.
Working this way imposes constraints on how we can safely proceed. We
need to be able to work in ways that facilitate the journey of exploration
that is at the heart of every software project.
So as well as having a laser-focus on learning, we need to work in ways that
allow us to make progress when the answers, and sometimes even the
direction, is uncertain.
For that we need to become experts at managing complexity. Whatever
the nature of the problems that we solve or the technologies that we use to
solve them, addressing the complexity of the problems that face us and the
solutions that we apply to them is a central differentiator between bad
systems and good.
To become experts at managing complexity, we need the following:

Modularity

Cohesion

Separation of Concerns

Abstraction

Loose Coupling

It is easy to look at these ideas and dismiss them as familiar. Yes, you are
almost certainly familiar with all of them. The aim of this book is to
organize them and place them into a coherent approach to developing
software systems that helps you take best advantage of their potential.
This book describes how to use these ten ideas as tools to steer software
development. It then goes on to describe a series of ideas that act as



practical tools to drive an effective strategy for any software development.
These ideas include the following:

Testability

Deployability

Speed

Controlling the variables

Continuous delivery

When we apply this thinking, the results are profound. We create software
of higher quality, we produce work more quickly, and the people working
on the teams that adopt these principles report that they enjoy their work
more, feel less stress, and have a better work-life balance.1

These are extravagant claims, but again they are backed by the data.

Reclaiming “Software Engineering”
I struggled over the title of this book, not because I didn’t know what I
wanted to call it, but because our industry has so redefined what
engineering means in the context of software that the term has become
devalued.
In software it is often seen as either simply a synonym for “code” or
something that puts people off as being overly bureaucratic and procedural.
For true engineering, nothing could be further from the truth.

1. Based on findings from the “State of DevOps” reports as well as reports from Microsoft and
Google

In other disciplines, engineering simply means the “stuff that works.” It is
the process and practice that you apply to increase your chances of doing a
good job.
If our “software engineering” practices don’t allow us to build better
software faster, then they aren’t really engineering, and we should change
them!



That is the fundamental idea at the heart of this book, and its aim is to
describe an intellectually consistent model that pulls together some
foundational principles that sit at the roots of all great software
development.
There is never any guarantee of success, but by adopting these mental tools
and organizing principles and applying them to your work, you will
certainly increase your chances of success.

How to Make Progress
Software development is a complex, sophisticated activity. It is, in some
ways, one of the more complex activities that we, as a species, undertake. It
is ridiculous to assume that every individual or even every team can, and
should, invent how to approach it, from scratch, every time we begin a new
piece of work.
We have learned, and continue to learn, things that work and things that
don’t. So how can we, as an industry and as teams, make progress and build
on the shoulders of giants, as Isaac Newton once said, if everyone has a
veto on everything? We need some agreed principles and some discipline
that guides our activities.
The danger in this line of thinking is that, if misapplied, it can lead to
draconian, overly directive, “decision from authority”–style thinking.
We will fall back on previous bad ideas, where the job of managers and
leaders is assumed to be to tell everyone else what to do and how to do it.
The big problem with being “proscriptive” or overly “directive” is, what do
we do if some of our ideas are wrong or incomplete? They inevitably will
be, so how can we challenge and refute old, but well-established, bad ideas
and evaluate novel, potentially great, untried ideas?
We have a very strong example of how to solve these problems. It’s an
approach that allows us the intellectual freedom to challenge and refute
dogma and to differentiate between fashion, plain-old bad ideas and great
ones, whatever their source. It allows us to replace the bad ideas with better
ideas and to improve on the good ideas. Fundamentally we need some
structure that allows us to grow and to evolve improved approaches,



strategies, processes, technologies, and solutions. We call this good
example science!
When we apply this kind of thinking to solving practical problems, we call
it engineering!
This book is about what it means to apply scientific-style reasoning to our
discipline and so achieve something that we can genuinely and accurately
refer to as software engineering.

The Birth of Software Engineering
Software engineering as a concept was created at the end of the 1960s. The
term was first used by Margaret Hamilton who later became the director of
the Software Engineering Division of the MIT Instrumentation Lab.
Margaret was leading the effort to develop the flight-control software for
the Apollo space program.
During the same period, the North Atlantic Treaty Organization (NATO)
convened a conference in Garmisch-Partenkirchen, Germany, to try to
define the term. This was the first software engineering conference.
The earliest computers had been programmed by flipping switches, or even
hard-coded as part of their design. It quickly became clear to the pioneers
that this was slow and inflexible, and the idea of the “stored program” was
born. This is the idea that, for the first time, made a clear distinction
between software and hardware.
By the late 1960s, computer programs had become complex enough to
make them difficult to create and maintain in their own right. They were
involved in solving more complex problems and were rapidly becoming the
enabling step that allowed certain classes of problems to be solved at all.
There was perceived to be a significant gap between the rate at which
progress was being made in hardware compared to the rate at which it was
being made in software. This was referred to, at the time, as the software
crisis.
The NATO conference was convened, in part, in response to this crisis.



Reading the notes from the conference today, there are many ideas that are
clearly durable. They have stood the test of time and are as true today as
they were in 1968. That should be interesting to us, if we aspire to identify
some fundamental characteristics that define our discipline.
A few years later, looking back, Turing award–winner Fred Brooks
compared the progress in software with that in hardware:

There is no single development, in either technology or management technique, which by
itself promises even one order of magnitude improvement within a decade in productivity, in
reliability, in simplicity.2

Brooks was saying this in comparison with the famous Moore’s law,3 which
hardware development had been tracking for many years.

2. Source: Fred Brooks’ 1986 paper called “No Silver Bullet.” See https://bit.ly/2UalM4T.

3. In 1965, Gordon Moore predicted that transistor densities (not performance) would double
every year, later revised to every two years, for the next decade (to 1975). This prediction became
a target for semiconductor producers and significantly exceeded Moore’s expectations, being met
for several more decades. Some observers believe that we are reaching the end of this explosive
growth in capacity, because of the limitations of the current approaches and the approach of
quantum effects, but at the time of writing, high-density semiconductor development continues to
track Moore’s law.

This is an interesting observation and one that, I think, would surprise many
people, but in essence it has always been true.
Brooks goes on to state that this is not so much a problem of software
development; it is much more an observation on the unique, staggering
improvement in hardware performance:

We must observe that the anomaly is not that software progress is so slow but that computer
hardware progress is so fast. No other technology since civilization began has seen six
orders of magnitude price-performance gain in 30 years.

He wrote this in 1986, what we would today think of as the dawn of the
computer age. Progress in hardware since then has continued at this pace,
and the computers that seemed so powerful to Brooks look like toys
compared to the capacity and performance of modern systems. And yet...his
observation on the rate of improvement in software development remains
true.

Shifting the Paradigm

https://bit.ly/2UalM4T


The idea of paradigm shift was created by physicist Thomas Kuhn.
Most learning is a kind of accretion. We build up layers of understanding,
with each layer foundationally under-pinned by the previous one.
However, not all learning is like that. Sometimes we fundamentally change
our perspective on something, and that allows us to learn new things, but
that also means we must discard what went before.
In the 18th century, reputable biologists (they weren’t called that then)
believed that some animals spontaneously generated themselves. Darwin
came along in the middle of the 19th century and described the process of
natural selection, and this overturned the idea of spontaneous generation
completely.
This change in thinking ultimately led to our modern understanding of
genetics and our ability to understand life at a more fundamental level,
create technologies that allow us to manipulate these genes, and create
COVID-19 vaccines and genetic therapies.
Similarly, Kepler, Copernicus, and Galileo challenged the then conventional
wisdom that Earth was at the center of the universe. They instead proposed
a heliocentric model for the solar system. This ultimately led to Newton
creating laws of gravitation and Einstein creating general relativity, and it
allowed us to travel in space and create technologies like GPS.
The idea of paradigm shift implicitly includes the idea that when we make
such a shift, we will, as part of that process, discard some other ideas that
we now know are no longer correct.
The implications of treating software development as a genuine engineering
discipline, rooted in the philosophy of the scientific method and scientific
rationalism, are profound.
It is profound not only in its impact and effectiveness, described so
eloquently in the Accelerate Book,4 but also in the essential need to discard
the ideas that this approach supersedes.
This gives us an approach to learning more effectively and discarding bad
ideas more efficiently.
I believe that the approach to software development that I describe in this
book represents such a paradigm shift. It provides us with a new perspective
on what it is that we do and how we do it.



Summary
Applying this kind of engineering thinking to software does not need to be
heavyweight or overly complex. The paradigm shift in thinking differently
about what it is that we do, and how we do it, when we create software
should help us to see the wood for the trees and make this simpler, more
reliable, and more efficient.
This is not about more bureaucracy; it is about enhancing our ability to
create high-quality software more sustainably and more reliably.

4. The people behind the “State of DevOps” reports, DORA, described the predictive model that
they have created from their research. Source: Accelerate: The Science of Lean Software and
DevOps by Nicole Fosgren, Jez Humble, and Gene Kim (2018)
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What Is Engineering?
I have been talking to people about software engineering for some years
now. As a result I regularly get involved in a surprising number of
conversations about bridge building. They usually start with the phrase
“Yes, but software isn’t bridge building” as though this was some kind of
revelation.
Of course, software engineering is not the same as bridge building, but what
most software developers think of as bridge building isn’t like real bridge
building, either. This conversation is really a form of confusion between
production engineering and design engineering.
Production engineering is a complex problem when the discipline involved
is dealing with physical things. You need to get those physical things
created to certain levels of precision and quality.
You need your widgets delivered to some specific location in space, at a
particular time, to a defined budget, and so on. You need to adapt
theoretical ideas to practical reality as your models and designs are found to
be lacking.
Digital assets are completely different. Although there are some analogs to
these problems, for digital artifacts these problems either don’t really exist
or can be made trivially simple. The cost of production of digital assets of
any kind is essentially free, or at least should be.

Production Is Not Our Problem
For most human endeavor, the production of “things” is the hard part. It
may take effort and ingenuity to design a car, an airliner, or a mobile phone,



but taking that initial prototype design and idea into mass production is
immensely more expensive and complicated.
This is particularly true if we aim to do it with any kind of efficiency. As a
result of these difficulties, we, products of the industrial age and industrial
age thinking, automatically, almost unthinkingly, worry about this aspect,
the production, of any significant task.
The result of this, in software, has been that we have fairly consistently
tried to apply “production-style thinking” to our industry. Waterfall1
processes are production lines for software. They are the tools of mass
production. They are not the tools of discovery, learning, and
experimentation that are, or at least should be, at the heart of our profession.
Unless we are foolish in our software development choices, for us,
production consists of triggering the build!
It is automatic, push-button, immensely scalable and so cheap that it is best
considered free. We can still make mistakes and get it wrong, but these are
problems that are understood and well addressed by tools and technology.
“Production” is not our problem. This makes our discipline unusual. It also
makes it subject to easy misunderstanding and misapplied thinking and
practices, because this ease of production is so unusual.

Design Engineering, Not Production
Engineering
Even in the real world, what most people think of as “bridge building” is
different if the bridge-builders are building the first of a new kind of bridge.
In this circumstance you have two problems: one that is relevant to software
development and one that is not.
First, the one that is not—when building even the first of a new kind of
bridge, because it is physical, you have all of the production problems, and
many more, that I mentioned. From a software perspective, these can be
ignored.
The second, in the case of bridge-building, is that in addition to those
production problems, if you are building the first of a new kind of bridge,



the second really difficult part is the design of your new bridge.
This is difficult because you can’t iterate quickly when your product is
something physical. When building physical things, they are difficult to
change.
As a result, engineers in other disciplines adopt modeling techniques. They
may choose to build small physical models, and these days probably
computer simulations of their design or mathematical models of various
kinds.
In this respect, we software developers have an enormous advantage. A
bridge-builder may create a computer simulation of their proposed design,
but this will only be an approximation of the real thing. Their simulation,
their model, will be inaccurate. The models that we create as software, our
computer simulations of a problem, are our product.

1. Waterfall, as applied to software development, is a staged, sequential approach to organizing
work by breaking it down into a series of distinct phases with well-defined handovers between
each phase. The idea is that you tackle each phase in turn, rather than iterate.

We don’t need to worry if our models match reality; our models are the
reality of our system, so we can verify them. We don’t need to worry about
the cost of changing them. They are software; thus, they are dramatically
easier to change, at least when compared to a bridge.
Ours is a technical discipline. We like to think of ourselves in this context,
and my guess is that the majority of people who think of themselves as
professional software developers probably have had some science in their
education.
Despite this, little software development is practiced with scientific
rationalism in mind. In part, this is because we took some missteps in our
history. In part this is because we assume that science is hard, expensive,
and impossible to achieve within the scope of normal software development
schedules.
Part of the mistake here is to assume some level of idealistic precision that
is impossible in any field, let alone the field of software development. We
have made the mistake of seeking mathematical precision, which is not the
same thing as engineering!



Engineering as Math

During the late 1980s and early 1990s there was a lot of talk about
more programming-structural ideas. The thinking about the
meaning of software engineering moved on to examine the ways in
which we work to generate the code. Specifically, how could we
work in ways that are more effective at identifying and eliminating
problems in our designs and implementations?

Formal methods became a popular idea. Most university courses, at
the time, would teach formal methods. A formal method is an
approach to building software systems that has, built into it, a
mathematical validation of the code written. The idea is that the
code is proven to be correct.

The big problem with this is that while it is hard to write code for a
complex system, it is even harder to write code that defines the
behavior of a complex system and that also proves itself to be
correct.

Formal methods are an appealing idea, but pragmatically they
haven’t gained widespread adoption in general software
development practice because at the point of production, they make
the code harder to produce, not less.

A more philosophical argument is a little different, though.
Software is unusual stuff; it clearly appeals to people who often
also enjoy mathematical thinking. So the appeal of taking a
mathematical approach to software is obvious, but also somewhat
limiting.

Consider a real-world analogy. Modern engineers will use all the
tools at their disposal to develop a new system. They will create
models and simulations and crunch the numbers to figure out if
their system will work. Their work is heavily informed by
mathematics, but then they will try it out for real.

In other engineering disciplines, math is certainly an important
tool, but it doesn’t replace the need to test and to learn empirically



from real-world experience. There is too much variance in the real
world to completely predict an outcome. If math alone was enough
to design an airplane, then that is what aerospace companies would
do, because it would be cheaper than building real prototypes, but
they don’t do that. Instead, they use math extensively to inform
their thinking, and then they check their thinking by testing a real
device. Software is not quite the same as an airplane or a space
rocket.

Software is digital and runs on mostly deterministic devices called
computers. So for some narrow contexts, if the problem is simple
enough, constrained enough, deterministic enough, and the
variability low enough, then formal methods can prove a case. The
problem here is the degree to which the system as a whole is
deterministic. If the system is concurrent anywhere, interacts with
the “real world” (people) anywhere, or is just working in a
sufficiently complex domain, then the “provability” quickly
explodes to become impractical.

So, instead, we take the same course as our aerospace colleagues,
apply mathematical thinking where we can, and take a data-driven,
pragmatic, empirical, experimental approach to learning, allowing
us to adapt our systems as we grow them incrementally.

As I write this book, SpaceX is busy blowing up rockets while it works to
perfect Starship.2 It has certainly built mathematical models of nearly every
aspect of the design of its rockets, its engines, the fuel delivery systems,
launch infrastructure, and everything else, but then it tests them.
Even something seemingly simple, like switching from 4mm stainless steel
to 3mm stainless steel, may sound like a pretty controlled change. SpaceX
has access to detailed data on the tensile strength of the metal. It has
experience and data collected from tests that show exactly how strong
pressure vessels constructed from the 4mm steel are.
Yet still, after SpaceX crunched the numbers, it built experimental
prototypes to evaluate the difference. It pressurized these test pieces to



destruction to see if the calculations were accurate and to gain deeper
insight. SpaceX collected data and validated its models because these
models will certainly be wrong in some esoteric, difficult-to-predict way.
The remarkable advantage that we have over all other engineering
disciplines means that the models that we create in software are the
executable result of our work, so when we test them, we are testing our
products, not our best guess of the reality of our products.
If we work carefully to isolate the part of the system that we are interested
in, we can evaluate it in exactly the same environment that it will be
exposed to in production. So our experimental simulation can much more
precisely and much more accurately represent the “real world” of our
systems than in any other discipline.

2. At the time of writing, SpaceX is developing a new fully reusable spacecraft. SpaceX’s intent is
to create a system that will allow people to journey to and live on Mars as well as explore other
parts of the solar system. It has adopted an intentionally fast, iterative style of engineering to
rapidly create and evaluate a series of fast-to-produce prototypes. This is design engineering in
extreme form at the limits of engineering knowledge and presents a fascinating example of what it
takes to create something new.

In his excellent talk called “Real Software Engineering,”3 Glenn
Vanderburg says that in other disciplines “Efdddssngineering means stuff
that works” and that almost the opposite has become true for software.
Vanderburg goes on to explore why this is the case. He describes an
academic approach to software engineering that was so onerous that almost
no one who had practiced it would recommend it for future projects.
It was heavyweight and added no significant value to the process of
software development at all. In a telling phrase, Vanderburg says:

[Academic software engineering] only worked because sharp people, who cared, were
willing to circumvent the process.

That is not engineering by any sensible definition.
Vanderburg’s description of “engineering as the stuff that works” is
important. If the practices that we choose to identify as “engineering” don’t
allow us to make better software faster, then they don’t qualify as
engineering!
Software development, unlike all physical production processes, is wholly
an exercise in discovery, learning, and design. Our problem is one of



exploration, and so we, even more than the spaceship designers, should be
applying the techniques of exploration rather than the techniques of
production engineering. Ours is solely a discipline of design engineering.
So if our understanding of engineering is often confused, what is
engineering really about?

The First Software Engineer

During the period when Margaret Hamilton was leading the
development of the Apollo flight control systems, there were no
“rules of the game” to follow. She said, “We evolved our ‘software
engineering’ rules with each new relevant discovery, while top
management rules from NASA went from “’complete freedom’” to
“’bureaucratic overkill.’”

There was very little experience of such complex projects to call on
at this time. So the team was often breaking new ground. The
challenges facing Hamilton and her team were profound, and there
was no looking up the answers on Stack Overflow in the 1960s.

Hamilton described some of the challenges:
The space mission software had to be man-rated. Not only did it have to work, it had to
work the first time. Not only did the software itself have to be ultra-reliable, it needed to
be able to perform error detection and recovery in real time. Our languages dared us to
make the most subtle of errors. We were on our own to come up with rules for building
software. What we learned from the errors was full of surprises.

3. https://youtu.be/RhdlBHHimeM

At the same time, software in general was looked down on as a
kind of “poor relation” compared to other, more “grown-up” forms
of engineering. One of the reasons that Hamilton coined the term
software engineering was to try to get people in other disciplines to
take the software more seriously.

One of the driving forces behind Hamilton’s approach was the
focus on how things fail—the ways in which we get things wrong.

https://youtu.be/RhdlBHHimeM


There was a fascination on my part with errors, a never ending pass-time of mine was
what made a particular error, or class of errors, happen and how to prevent it in the
future.

This focus was grounded in a scientifically rational approach to
problem-solving. The assumption was not that you could plan and
get it right the first time, rather that you treated all ideas, solutions,
and designs with skepticism until you ran out of ideas about how
things could go wrong. Occasionally, reality is still going to
surprise you, but this is engineering empiricism at work.

The other engineering principle that is embodied in Hamilton’s
early work is the idea of “failing safely.” The assumption is that we
can never code for every scenario, so how do we code in ways that
allow our systems to cope with the unexpected and still make
progress? Famously it was Hamilton’s unasked-for implementation
of this idea that saved the Apollo 11 mission and allowed the Lunar
Module Eagle to successfully land on the moon, despite the
computer becoming overloaded during the descent.

As Neil Armstrong and Buzz Aldrin descended in the Lunar
Excursion Module (LEM) toward the moon, there was an exchange
between the astronauts and mission control. As the LEM neared the
surface of the moon, the computer reported 1201 and 1202 alarms.
The astronauts asked whether they should proceed or abort the
mission.

NASA hesitated until one of the engineers shouted “Go!” because
he understood what had happened to the software.

On Apollo 11, each time a 1201 or 1202 alarm appeared, the computer rebooted,
restarted the important stuff, like steering the descent engine and running the DSKY to
let the crew know what was going on, but did not restart all the erroneously-scheduled
rendezvous radar jobs. The NASA guys in the MOCR knew—because MIT had
extensively tested the restart capability—that the mission could go forward.4

This “fail safe” behavior was coded into the system, without any
specific prediction of when or how it would be useful.

So Hamilton and her team introduced two key attributes of a more
engineering-led style of thinking, with empirical learning and



discovery and the habit of imagining how things could possibly go
wrong.

4. Source: “Peter Adler” (https://go.nasa.gov/1AKbDei)

A Working Definition of Engineering
Most dictionary definitions of the word engineering include common words
and phrases: “application of math,” “empirical evidence,” “scientific
reasoning,” “within economic constraints.”
I propose the following working definition:

Engineering is the application of an empirical, scientific approach to finding efficient,
economic solutions to practical problems.

All of the words here matter. Engineering is applied science. It is practical.
Using “empirical” means to learn and advance understanding and solutions
toward the resolution of a problem.
The solutions that engineering creates are not abstract ivory-tower things;
they are practical and applicable to the problem and the context.
They are efficient, and they are created with an understanding of, and
constrained by, the economics of the situation.

Engineering != Code
Another common misperception of what engineering means when it comes
to software development is that engineering is only the output—the code or
perhaps its design.
This is too narrow an interpretation. What does engineering mean to
SpaceX? It is not the rockets; they are the products of engineering.
Engineering is the process of creating them. There is certainly engineering
in the rockets, and they are certainly “engineered structures,” but we don’t
see only the act of welding the metal as engineering unless we have a
weirdly narrow view of the topic.
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Fundamentals of an Engineering
Approach
Engineering in different disciplines varies. Bridge building is not the same
as aerospace engineering, and neither is it the same as electrical engineering
or chemical engineering, but all of these disciplines share some common
ideas. They are all firmly grounded in scientific rationalism and take a
pragmatic, empirical approach to making progress.
If we are to achieve our goal of trying to define a collection of long-lasting
thoughts, ideas, practices, and behaviors that we could collectively group
together under the name software engineering, these ideas must be fairly
fundamental to the reality of software development and robust in the face of
change.

An Industry of Change?
We talk a lot about change in our industry. We get excited about new
technologies and new products, but do these changes really “move the dial”
on software development? Many of the changes that exercise us don’t seem
to make as much difference as we sometimes seem to think that they will.
My favorite example of this was demonstrated in a lovely conference
presentation by “Christin Gorman.”1 In it, Christin demonstrates that when
using the then popular open source object relational mapping library
Hibernate, it was actually more code to write than the equivalent behavior
written in SQL, subjectively at least; the SQL was also easier to understand.
Christin goes on to amusingly contrast software development with making
cakes. Do you make your cake with a cake mix or choose fresh ingredients
and make it from scratch?



1. Source: “Gordon Ramsay Doesn’t Use Cake Mixes” by Christin Gorman,
https://bit.ly/3g02cWO

Much of the change in our industry is ephemeral and does not improve
things. Some, like in the Hibernate example, actually make things worse.
My impression is that our industry struggles to learn and struggles to make
progress. This relative lack of advancement has been masked by the
incredible progress that has been made in the hardware on which our code
runs.
I don’t mean to imply that there has been no progress in software—far from
it—but I do believe that the pace of progress is much slower than many of
us think. Consider, for a moment, what changes in your career have had a
significant impact on the way in which you think about and practice
software development. What ideas made a difference to the quality, scale, or
complexity of the problems that you can solve?
The list is shorter than we usually assume.
For example, I have employed something like 15 or 20 different
programming languages during my professional career. Although I have
preferences, only two changes in language have radically changed how I
think about software and design.
Those steps were the step from Assembler to C and the step from
procedural to OO programming. The individual languages are less
important than the programming paradigm to my mind. Those steps
represented significant changes in the level of abstraction that I could deal
with in writing code. Each represented a step-change in the complexity of
the systems that we could build.
When Fred Brooks wrote that there were no order-of-magnitude gains, he
missed something. There may not be any 10x gains, but there are certainly
10x losses.
I have seen organizations that were hamstrung by their approach to software
development, sometimes by technology, more often by process. I once
consulted in a large organization that hadn’t released any software into
production for more than five years.
We not only seem to find it difficult to learn new ideas; we seem to find it
almost impossible to discard old ideas, however discredited they may have

https://bit.ly/3g02cWO


become.

The Importance of Measurement
One of the reasons that we find it difficult to discard bad ideas is that we
don’t really measure our performance in software development very
effectively.
Most metrics applied to software development are either irrelevant
(velocity) or sometimes positively harmful (lines of code or test coverage).
In agile development circles it has been a long-held view that measurement
of software team, or project performance, is not possible. Martin Fowler
wrote about one aspect of this in his widely read Bliki in 2003.2

2. Source: “Cannot Measure Productivity” by Martin Fowler, https://bit.ly/3mDO2fB

Fowler’s point is correct; we don’t have a defensible measure for
productivity, but that is not the same as saying that we can’t measure
anything useful.
The valuable work carried out by Nicole Fosgren, Jez Humble, and Gene
Kim in the “State of DevOps” reports3 and in their book Accelerate: The
Science of Lean Software & DevOps4 represents an important step forward
in being able to make stronger, more evidence-based decisions. They
present an interesting and compelling model for the useful measurement of
the performance of software teams.
Interestingly, they don’t attempt to measure productivity; rather, they
evaluate the effectiveness of software development teams based on two key
attributes. The measures are then used as a part of a predictive model. They
cannot prove that these measures have a causal relationship with the
performance of software development teams, but they can demonstrate a
statistical correlation.
The measures are stability and throughput. Teams with high stability and
high throughput are classified as “high performers,” while teams with low
scores against these measures are “low performers.”
The interesting part is that if you analyze the activities of these high- and
low-performing groups, they are consistently correlated. High-performing

https://bit.ly/3mDO2fB


teams share common behaviors. Equally, if we look at the activities and
behaviors of a team, we can predict their score, against these measures, and
it too is correlated. Some activities can be used to predict performance on
this scale.
For example, if your team employs test automation, trunk-based
development, deployment automation, and about ten other practices, their
model predicts that you will be practicing continuous delivery. If you
practice continuous delivery, the model predicts that you will be “high
performing” in terms of software delivery performance and organizational
performance.
Alternatively, if we look at organizations that are seen as high performers,
then there are common behaviors, such as continuous delivery and being
organized into small teams, that they share.
Measures of stability and throughput, then, give us a model that we can use
to predict team outcomes.
Stability and throughput are each tracked by two measures.
Stability is tracked by the following:

Change Failure Rate: The rate at which a change introduces a defect
at a particular point in the process

Recovery Failure Time: How long to recover from a failure at a
particular point in the process

3. Source: Nicole Fosgren, Jez Humble, Gene Kim, https://bit.ly/2PWyjw7

4. The Accelerate Book describes how teams that take a more disciplined approach to
development spend “44% more time on new work” than teams that don’t. See
https://amzn.to/2YYf5Z8.

Measuring stability is important because it is really a measure of the quality
of work done. It doesn’t say anything about whether the team is building the
right things, but it does measure that their effectiveness in delivering
software with measurable quality.
Throughput is tracked by the following:

Lead Time: A measure of the efficiency of the development process.
How long for a single-line change to go from “idea” to “working

https://bit.ly/2PWyjw7
https://amzn.to/2YYf5Z8


software”?

Frequency: A measure of speed. How often are changes deployed
into production?

Throughput is a measure of a team’s efficiency at delivering ideas, in the
form of working software.
How long does it take to get a change into the hands of users, and how often
is that achieved? This is, among other things, an indication of a team’s
opportunities to learn. A team may not take those opportunities, but without
a good score in throughput, any team’s chance of learning is reduced.
These are technical measures of our development approach. They answer
the questions “what is the quality of our work?” and “how efficiently can
we produce work of that quality?”
These are meaningful ideas, but they leave some gaps. They don’t say
anything about whether we are building the right things, only if we are
building them right, but just because they aren’t perfect does not diminish
their utility.
Interestingly, the correlative model that I described goes further than
predicting team size and whether you are applying continuous delivery. The
Accelerate authors have data that shows significant correlations with much
more important things.
For example, organizations made up of high-performing teams, based on
this model, make more money than orgs that don’t. Here is data that says
that there is a correlation between a development approach and the
commercial outcome for the company that practices it.
It also goes on to dispel a commonly held belief that “you can have either
speed or quality but not both.” This is simply not true. Speed and quality
are clearly correlated in the data from this research. The route to speed is
high-quality software, the route to high-quality software is speed of
feedback, and the route to both is great engineering.

Applying Stability and Throughput



The correlation of good scores in these measures with high-quality results is
important. It offers us an opportunity to use them to evaluate changes to our
process, organization, culture, or technology.
Imagine, for example, that we are concerned with the quality of our
software. How could we improve it? We could decide to make a change to
our process. Let us add a change approval board (CAB).
Clearly the addition of extra review and sign-offs are going to adversely
impact on throughput, and such changes will inevitably slow down the
process. However, do they increase stability?
For this particular example the data is in. Perhaps surprisingly, change
approval boards don’t improve stability. However, the slowing down of the
process does impact stability adversely.

We found that external approvals were negatively correlated with lead-time, deployment
frequency, and restore-time, and had no correlation with change fail rate. In short, approval
by an external body (such as a manager or CAB) simply doesn’t work to increase the
stability of production systems, measured by time to restore service and change fail rate.
However, it certainly slows things down. It is, in fact, worse than having no change approval
process at all.5

My real point here is not to poke fun at change approval boards, but rather
to show the importance of making decisions based on evidence rather than
guesswork.
It is not obvious that CABs are a bad idea. They sound sensible, and in
reality that is how many, probably most, organizations try to manage
quality. The trouble is that it doesn’t work.
Without effective measurement, we can’t tell that it doesn’t work; we can
only make guesses.
If we are to start applying a more evidence-based, scientifically rational
approach to decision-making, you shouldn’t take my word, or the word of
Forsgren and her co-authors, on this or anything else.
Instead, you could make this measurement for yourself, in your team.
Measure the throughput and stability of your existing approach, whatever
that may be. Make a change, whatever that may be. Does the change move
the dial on either of these measures?
You can read more about this correlative model in the excellent Accelerate
book. It describes the approach to measurement and the model that is



evolving as research continues. My point here is not to duplicate those
ideas, but to point out the important, maybe even profound, impact that this
should have on our industry. We finally have a useful measuring stick.
We can use this model of stability and throughput to measure the effect of
any change.
We can see the impact of changes in organization, process, culture, and
technology. “If I adopt this new language, does it increase my throughput or
stability?”
We can also use these measures to evaluate different parts of our process.
“If I have a significant amount of manual testing, it is certainly going to be
slower than automated testing, but does it improve stability?”
We still have to think carefully. We need to consider the meaning of the
results. What does it mean if something reduces throughput but increases
stability?
Nevertheless, having meaningful measures that allow us to evaluate actions
is important, even vital, to taking a more evidence-based approach to
decision-making.

5. Accelerate by Nicole Forsgren, Jez Humble, and Gene Kim, 2018

The Foundations of a Software
Engineering Discipline
So, what are some of these foundational ideas? What are the ideas that we
could expect to be correct in 100 years’ time and applicable whatever our
problem and whatever our technology?
There are two categories: process, or maybe even philosophical approach,
and technique or design.
More simply, our discipline should focus on two core competencies.
We should become experts at learning. We should recognize and accept
that our discipline is a creative design discipline and has no meaningful
relationship to production-engineering and instead focus on mastery of the



skills of exploration, discovery, and learning. This is a practical application
of a scientific style of reasoning.
We also need to focus on improving our skills in managing complexity. We
build systems that don’t fit into our heads. We build systems on a large
scale with large groups of people working on them. We need to become
expert at managing complexity to cope with this, both at the technical
level and at the organizational level.

Experts at Learning
Science is humanity’s best problem-solving technique. If we are to become
experts at learning, we need to adopt and become skilled at the kind of
practical science-informed approach to problem-solving that is the essence
of other engineering disciplines.
It must be tailored to our problems. Software engineering will be different
from other forms of engineering, specific to software, in the same way that
aerospace engineering is different from chemical engineering. It needs to be
practical, light weight, and pervasive in our approach to solving problems in
software.
There is considerable consensus among people who many of us consider to
be thought leaders in our industry on this topic. Despite being well known,
these ideas are not currently universally or even widely practiced as the
foundations of how we approach much of software development.
There are five linked behaviors in this category:

Working iteratively

Employing fast, high-quality feedback

Working incrementally

Being experimental

Being empirical

If you have not thought about this before, these five practices may seem
abstract and rather divorced from the day-to-day activities of software



development, let alone software engineering.
Software development is an exercise in exploration and discovery. We are
always trying to learn more about what our customers or users want from
the system, how to better solve the problems presented to us, and how to
better apply the tools and techniques at our disposal.
We learn that we have missed something and have to fix things. We learn
how to organize ourselves to work better, and we learn to more deeply
understand the problems that we are working on.
Learning is at the heart of everything that we do. These practices are the
foundations of any effective approach to software development, but they
also rule out some less effective approaches.
Waterfall development approaches don’t exhibit these properties, for
example. Nevertheless, these behaviors are all correlated with high
performance in software development teams and have been the hallmarks of
successful teams for decades.
Part II explores each of these ideas in more depth from a practical
perspective: How do we become experts at learning, and how do we apply
that to our daily work?

Experts at Managing Complexity
As a software developer, I see the world through the lens of software
development. As a result, my perception of the failures in software
development and the culture that surrounds it can largely be thought of in
terms of two information science ideas: concurrency and coupling.
These are difficult in general, not just in software design. So, these ideas
leak out from the design of our systems and affect the ways in which the
organizations in which we work operate.

You can explain this with ideas like Conway’s law,6 but Conway’s law is
more like an emergent property of these deeper truths.
You can profitably think of this in more technical terms. A human
organization is just as much an information system as any computer system.
It is almost certainly more complex, but the same fundamental ideas apply.



Things that are fundamentally difficult, like concurrency and coupling, are
difficult in the real world of people, too.
If we want to build systems any more complex than the simplest of toy
programming exercises, we need to take these ideas seriously. We need to
manage the complexity of the systems that we create as we create them, and
if we want to do this at any kind of scale beyond the scope of a single, small
team, we need to manage the complexity of the organizational information
systems as well as the more technical software information systems.
As an industry, it is my impression that we pay too little attention to these
ideas, so much so that all of us who have spent any time around software
are familiar with the results: big-ball-of-mud systems, out-of-control
technical debt, crippling bug counts, and organizations afraid to make
changes to the systems that they own.

6. In 1967, Mervin Conway observed that “Any organization that designs a system (defined
broadly) will produce a design whose structure is a copy of the organization’s communication
structure.” See https://bit.ly/3s2KZP2.

I perceive all of these as a symptom of teams that have lost control of the
complexity of the systems that they are working on.
If you are working on a simple, throwaway software system, then the
quality of its design matters little. If you want to build something more
complex, then you must divide the problem up so that you can think about
parts of it without becoming overwhelmed by the complexity.
Where you draw those lines depends on a lot of variables: the nature of the
problem that you are solving, the technologies that you are employing, and
probably even how smart you are, to some extent, but you must draw the
lines if you want to solve harder problems.
Immediately as you buy in to this idea, we are talking about ideas that have
a big impact in terms of the design and architecture of the systems that we
create. I was a little wary, in the previous paragraph, of mentioning
“smartness” as a parameter, but it is one. The problem that I was wary of is
that most of us overestimate our abilities to solve a problem in code.
This is one of the many lessons that we can learn from an informal take on
science. It’s best to start off assuming that our ideas are wrong and work to
that assumption. So we should be much more wary about the potential

https://bit.ly/3s2KZP2


explosion of complexity in the systems that we create and work to manage
it diligently and with care as we make progress.
There are five ideas in this category, too. These ideas are closely related to
one another and linked to the ideas involved in becoming experts at
learning. Nevertheless, these five ideas are worth thinking about if we are to
manage complexity in a structured way for any information system:

Modularity

Cohesion

Separation of concerns

Information hiding/abstraction

Coupling

We will explore each of these ideas in much more depth in Part III.

Summary
The tools of our trade are often not really what we think they are. The
languages, tools, and frameworks that we use change over time and from
project to project. The ideas that facilitate our learning and allow us to deal
with the complexity of the systems that we create are the real tools of our
trade. By focusing on these things, it will help us to better choose the
languages, wield the tools, and apply the frameworks in ways that help us
do a more effective job of solving problems with software.
Having a “yardstick” that allows us to evaluate these things is an enormous
advantage if we want to make decisions based on evidence and data, rather
than fashion or guesswork. When making a choice, we should ask
ourselves, “does this increase the quality of the software that we create?”
measured by the metrics of stability. Or “does this increase the efficiency
with which we create software of that quality” measured by throughput. If
it doesn’t make either of these things worse, we can pick what we prefer;
otherwise, why would we choose to do something that makes either of these
things worse?


