
Design Patterns: Elements of Reusable Object-Oriented Software

Proxy

Intent

Provide a surrogate or placeholder for another object to control access to it.

Also Known As

Surrogate

Motivation

One reason for controlling access to an object is to defer the full cost of its

creation and initialization until we actually need to use it. Consider a document

editor that can embed graphical objects in a document. Some graphical objects, like

large raster images, can be expensive to create. But opening a document should be

fast, so we should avoid creating all the expensive objects at once when the

document is opened. This isn't necessary anyway, because not all of these objects

will be visible in the document at the same time.

These constraints would suggest creating each expensive object on demand, which in

this case occurs when an image becomes visible. But what do we put in the document

in place of the image? And how can we hide the fact that the image is created on

demand so that we don't complicate the editor's implementation? This optimization

shouldn't impact the rendering and formatting code, for example.

The solution is to use another object, an image proxy, that acts as a stand-in for

the real image. The proxy acts just like the image and takes care of instantiating

it when it's required.

233

Design Patterns: Elements of Reusable Object-Oriented Software

The image proxy creates the real image only when the document editor asks it to

display itself by invoking its Draw operation. The proxy forwards subsequent

requests directly to the image. It must therefore keep a reference to the image

after creating it.

Let's assume that images are stored in separate files. In this case we can use the

file name as the reference to the real object. The proxy also stores its extent,

that is, its width and height. The extent lets the proxy respond to requests for its

size from the formatter without actually instantiating the image.

The following class diagram illustrates this example in more detail.

The document editor accesses embedded images through the interface defined by the

abstract Graphic class. ImageProxy is a class for images that are created on demand.

ImageProxy maintains the file name as a reference to the image on disk. The file

name is passed as an argument to the ImageProxy constructor.

ImageProxy also stores the bounding box of the image and a reference to the real

Image instance. This reference won't be valid until the proxy instantiates the real

image. The Draw operation makes sure the image is instantiated before forwarding it

the request. GetExtent forwards the request to the image only if it's instantiated;

otherwise ImageProxy returns the extent it stores.

Applicability

234

Design Patterns: Elements of Reusable Object-Oriented Software

Proxy is applicable whenever there is a need for a more versatile or sophisticated

reference to an object than a simple pointer. Here are several common situations in

which the Proxy pattern is applicable:

• A remote proxy provides a local representative for an object in a different

address space. NEXTSTEP [Add94] uses the class NXProxy for this purpose.

Coplien [Cop92] calls this kind of proxy an "Ambassador."

• A virtual proxy creates expensive objects on demand. The ImageProxy described

in the Motivation is an example of such a proxy.

• A protection proxy controls access to the original object. Protection proxies

are useful when objects should have different access rights. For example,

KernelProxies in the Choices operating system [CIRM93] provide protected

access to operating system objects.

• A smart reference is a replacement for a bare pointer that performs

additional actions when an object is accessed. Typical uses include

o counting the number of references to the real object so that it can be

freed automatically when there are no more references (also called

smart pointers [Ede92]).

o loading a persistent object into memory when it's first referenced.

o checking that the real object is locked before it's accessed to ensure

that no other object can change it.

Structure

Here's a possible object diagram of a proxy structure at run-time:

235

Design Patterns: Elements of Reusable Object-Oriented Software

Participants

• Proxy (ImageProxy)

o maintains a reference that lets the proxy access the real subject.

Proxy may refer to a Subject if the RealSubject and Subject interfaces

are the same.

o provides an interface identical to Subject's so that a proxy can by

substituted for the real subject.

o controls access to the real subject and may be responsible for

creating and deleting it.

o other responsibilities depend on the kind of proxy:

 remote proxies are responsible for encoding a request and its

arguments and for sending the encoded request to the real

subject in a different address space.

 virtual proxies may cache additional information about the real

subject so that they can postpone accessing it. For example,

the ImageProxy from the Motivation caches the real image's

extent.

 protection proxies check that the caller has the access

permissions required to perform a request.

• Subject (Graphic)

o defines the common interface for RealSubject and Proxy so that a Proxy

can be used anywhere a RealSubject is expected.

• RealSubject (Image)

o defines the real object that the proxy represents.

Collaborations

• Proxy forwards requests to RealSubject when appropriate, depending on the

kind of proxy.

Consequences

236

Design Patterns: Elements of Reusable Object-Oriented Software

The Proxy pattern introduces a level of indirection when accessing an object. The

additional indirection has many uses, depending on the kind of proxy:

1. A remote proxy can hide the fact that an object resides in a different

address space.

2. A virtual proxy can perform optimizations such as creating an object on

demand.

3. Both protection proxies and smart references allow additional housekeeping

tasks when an object is accessed.

There's another optimization that the Proxy pattern can hide from the client. It's

called copy-on-write, and it's related to creation on demand. Copying a large and

complicated object can be an expensive operation. If the copy is never modified,

then there's no need to incur this cost. By using a proxy to postpone the copying

process, we ensure that we pay the price of copying the object only if it's modified.

To make copy-on-write work, the subject must be reference counted. Copying the proxy

will do nothing more than increment this reference count. Only when the client

requests an operation that modifies the subject does the proxy actually copy it. In

that case the proxy must also decrement the subject's reference count. When the

reference count goes to zero, the subject gets deleted.

Copy-on-write can reduce the cost of copying heavyweight subjects significantly.

Implementation

The Proxy pattern can exploit the following language features:

1. Overloading the member access operator in C++. C++ supports overloading

operator->, the member access operator. Overloading this operator lets you

perform additional work whenever an object is dereferenced. This can be

helpful for implementing some kinds of proxy; the proxy behaves just like a

pointer.

The following example illustrates how to use this technique to implement a

virtual proxy called ImagePtr.

class Image;

extern Image* LoadAnImageFile(const char*);

// external function

class ImagePtr {

 public:

237

Design Patterns: Elements of Reusable Object-Oriented Software

 ImagePtr(const char* imageFile);

 virtual ~ImagePtr();

 virtual Image* operator->();

 virtual Image& operator*();

private:

 Image* LoadImage();

private:

 Image* _image;

 const char* _imageFile;

};

ImagePtr::ImagePtr (const char* theImageFile) {

_imageFile = theImageFile;

_image = 0;

}

Image* ImagePtr::LoadImage () {

 if (_image == 0) {

 _image = LoadAnImageFile(_imageFile);

 }

 return _image;

}

The overloaded -> and * operators use LoadImage to return _image to callers

(loading it if necessary).

Image* ImagePtr::operator-> () {

 return LoadImage();

}

Image& ImagePtr::operator* () {

 return *LoadImage();

}

This approach lets you call Image operations through ImagePtr objects without

going to the trouble of making the operations part of the ImagePtr interface:

ImagePtr image = ImagePtr("anImageFileName");

image->Draw(Point(50, 100));

// (image.operator->())->Draw(Point(50, 100))

Notice how the image proxy acts like a pointer, but it's not declared to be a

pointer to an Image. That means you can't use it exactly like a real pointer

238

Design Patterns: Elements of Reusable Object-Oriented Software

to an Image. Hence clients must treat Image and ImagePtr objects differently

in this approach.

Overloading the member access operator isn't a good solution for every kind

of proxy. Some proxies need to know precisely which operation is called, and

overloading the member access operator doesn't work in those cases.

Consider the virtual proxy example in the Motivation. The image should be

loaded at a specific time—namely when the Draw operation is called—and not

whenever the image is referenced. Overloading the access operator doesn't

allow this distinction. In that case we must manually implement each proxy

operation that forwards the request to the subject.

These operations are usually very similar to each other, as the Sample Code

demonstrates. Typically all operations verify that the request is legal, that

the original object exists, etc., before forwarding the request to the

subject. It's tedious to write this code again and again. So it's common to

use a preprocessor to generate it automatically.

2. Using doesNotUnderstand in Smalltalk. Smalltalk provides a hook that you can

use to support automatic forwarding of requests. Smalltalk calls

doesNotUnderstand: aMessage when a client sends a message to a receiver that

has no corresponding method. The Proxy class can redefine doesNotUnderstand

so that the message is forwarded to its subject.

To ensure that a request is forwarded to the subject and not just absorbed by

the proxy silently, you can define a Proxy class that doesn't understand any

messages. Smalltalk lets you do this by defining Proxy as a class with no

superclass.6

The main disadvantage of doesNotUnderstand: is that most Smalltalk systems

have a few special messages that are handled directly by the virtual machine,

and these do not cause the usual method look-up. The only one that's usually

implemented in Object (and so can affect proxies) is the identity operation

==.

If you're going to use doesNotUnderstand: to implement Proxy, then you must

design around this problem. You can't expect identity on proxies to mean

identity on their real subjects. An added disadvantage is that

doesNotUnderstand: was developed for error handling, not for building proxies,

and so it's generally not very fast.

3. Proxy doesn't always have to know the type of real subject. If a Proxy class

can deal with its subject solely through an abstract interface, then there's

no need to make a Proxy class for each RealSubject class; the proxy can deal

239

Design Patterns: Elements of Reusable Object-Oriented Software

with all RealSubject classes uniformly. But if Proxies are going to

instantiate RealSubjects (such as in a virtual proxy), then they have to know

the concrete class.

Another implementation issue involves how to refer to the subject before it's

instantiated. Some proxies have to refer to their subject whether it's on disk or in

memory. That means they must use some form of address space-independent object

identifiers. We used a file name for this purpose in the Motivation.

Sample Code

The following code implements two kinds of proxy: the virtual proxy described in the

Motivation section, and a proxy implemented with doesNotUnderstand:.7

1. A virtual proxy. The Graphic class defines the interface for graphical

objects:

class Graphic {

 public:

 virtual ~Graphic();

 virtual void Draw(const Point& at) = 0;

 virtual void HandleMouse(Event& event) = 0;

 virtual const Point& GetExtent() = 0;

 virtual void Load(istream& from) = 0;

 virtual void Save(ostream& to) = 0;

 protected:

 Graphic();

};

The Image class implements the Graphic interface to display image files.

Image overrides HandleMouse to let users resize the image interactively.

class Image : public Graphic {

 public:

 Image(const char* file); // loads image from a file

 virtual ~Image();

 virtual void Draw(const Point& at);

 virtual void HandleMouse(Event& event);

240

Design Patterns: Elements of Reusable Object-Oriented Software

 virtual const Point& GetExtent();

 virtual void Load(istream& from);

 virtual void Save(ostream& to);

 private:

 // ...

};

ImageProxy has the same interface as Image:

class ImageProxy : public Graphic {

 public:

 ImageProxy(const char* imageFile);

 virtual ~ImageProxy();

 virtual void Draw(const Point& at);

 virtual void HandleMouse(Event& event);

 virtual const Point& GetExtent();

 virtual void Load(istream& from);

 virtual void Save(ostream& to);

 protected:

 Image* GetImage();

 private:

 Image* _image;

 Point _extent;

 char* _fileName;

};

The constructor saves a local copy of the name of the file that stores the

image, and it initializes _extent and _image:

ImageProxy::ImageProxy (const char* fileName) {

 _fileName = strdup(fileName);

 _extent = Point::Zero; // don't know extent yet

 _image = 0;

}

Image* ImageProxy::GetImage() {

 if (_image == 0) {

 _image = new Image(_fileName);

241

Design Patterns: Elements of Reusable Object-Oriented Software

 }

 return _image;

}

The implementation of GetExtent returns the cached extent if possible;

otherwise the image is loaded from the file. Draw loads the image, and

HandleMouse forwards the event to the real image.

const Point& ImageProxy::GetExtent () {

 if (_extent == Point::Zero) {

 _extent = GetImage()->GetExtent();

 }

 return _extent;

}

void ImageProxy::Draw (const Point& at) {

 GetImage()->Draw(at);

}

void ImageProxy::HandleMouse (Event& event) {

 GetImage()->HandleMouse(event);

}

The Save operation saves the cached image extent and the image file name to a

stream. Load retrieves this information and initializes the corresponding

members.

void ImageProxy::Save (ostream& to) {

 to << _extent << _fileName;

}

void ImageProxy::Load (istream& from) {

 from >> _extent >> _fileName;

}

Finally, suppose we have a class TextDocument that can contain Graphic

objects:

class TextDocument {

 public:

 TextDocument();

 void Insert(Graphic*);

242

Design Patterns: Elements of Reusable Object-Oriented Software

 // ...

};

We can insert an ImageProxy into a text document like this:

TextDocument* text = new TextDocument;

// ...

text->Insert(new ImageProxy("anImageFileName"));

2. Proxies that use doesNotUnderstand. You can make generic proxies in Smalltalk

by defining classes whose superclass is nil8 and defining the

doesNotUnderstand: method to handle messages.

The following method assumes the proxy has a realSubject method that returns

its real subject. In the case of ImageProxy, this method would check to see

if the Image had been created, create it if necessary, and finally return it.

It uses perform:withArguments: to perform the message being trapped on the

real subject.

doesNotUnderstand: aMessage

 ^ self realSubject

 perform: aMessage selector

 withArguments: aMessage arguments

The argument to doesNotUnderstand: is an instance of Message that represents

the message not understood by the proxy. So the proxy responds to all

messages by making sure that the real subject exists before forwarding the

message to it.

One of the advantages of doesNotUnderstand: is it can perform arbitrary

processing. For example, we could produce a protection proxy by specifying a

set legalMessages of messages to accept and then giving the proxy the

following method:

doesNotUnderstand: aMessage

 ^ (legalMessages includes: aMessage selector)

 ifTrue: [self realSubject

 perform: aMessage selector

 withArguments: aMessage arguments]

 ifFalse: [self error: 'Illegal operator']

243

Design Patterns: Elements of Reusable Object-Oriented Software

This method checks to see that a message is legal before forwarding it to the

real subject. If it isn't legal, then it will send error: to the proxy, which

will result in an infinite loop of errors unless the proxy defines error:.

Consequently, the definition of error: should be copied from class Object

along with any methods it uses.

Known Uses

The virtual proxy example in the Motivation section is from the ET++ text building

block classes.

NEXTSTEP [Add94] uses proxies (instances of class NXProxy) as local representatives

for objects that may be distributed. A server creates proxies for remote objects

when clients request them. On receiving a message, the proxy encodes it along with

its arguments and then forwards the encoded message to the remote subject. Similarly,

the subject encodes any return results and sends them back to the NXProxy object.

McCullough [McC87] discusses using proxies in Smalltalk to access remote objects.

Pascoe [Pas86] describes how to provide side-effects on method calls and access

control with "Encapsulators."

Related Patterns

Adapter (157): An adapter provides a different interface to the object it adapts. In

contrast, a proxy provides the same interface as its subject. However, a proxy used

for access protection might refuse to perform an operation that the subject will

perform, so its interface may be effectively a subset of the subject's.

Decorator (196): Although decorators can have similar implementations as proxies,

decorators have a different purpose. A decorator adds one or more responsibilities

to an object, whereas a proxy controls access to an object.

Proxies vary in the degree to which they are implemented like a decorator. A

protection proxy might be implemented exactly like a decorator. On the other hand, a

remote proxy will not contain a direct reference to its real subject but only an

indirect reference, such as "host ID and local address on host." A virtual proxy

will start off with an indirect reference such as a file name but will eventually

obtain and use a direct reference.

244

Design Patterns: Elements of Reusable Object-Oriented Software

6The implementation of distributed objects in NEXTSTEP [Add94] (specifically, the

class NXProxy) uses this technique. The implementation redefines forward, the

equivalent hook in NEXTSTEP.

7Iterator (289) describes another kind of proxy on page 299.

8Almost all classes ultimately have Object as their superclass. Hence this is the

same as saying "defining a class that doesn't have Object as its superclass."

245

