
Design Patterns: Elements of Reusable Object-Oriented Software

Observer

Intent

Define a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.

Also Known As

Dependents, Publish-Subscribe

Motivation

A common side-effect of partitioning a system into a collection of cooperating

classes is the need to maintain consistency between related objects. You don't want

to achieve consistency by making the classes tightly coupled, because that reduces

their reusability.

For example, many graphical user interface toolkits separate the presentational

aspects of the user interface from the underlying application data [KP88, LVC89,

P+88, WGM88]. Classes defining application data and presentations can be reused

independently. They can work together, too. Both a spreadsheet object and bar chart

object can depict information in the same application data object using different

presentations. The spreadsheet and the bar chart don't know about each other,

thereby letting you reuse only the one you need. But they behave as though they do.

When the user changes the information in the spreadsheet, the bar chart reflects the

changes immediately, and vice versa.

326

Design Patterns: Elements of Reusable Object-Oriented Software

This behavior implies that the spreadsheet and bar chart are dependent on the data

object and therefore should be notified of any change in its state. And there's no

reason to limit the number of dependent objects to two; there may be any number of

different user interfaces to the same data.

The Observer pattern describes how to establish these relationships. The key objects

in this pattern are subject and observer. A subject may have any number of dependent

observers. All observers are notified whenever the subject undergoes a change in

state. In response, each observer will query the subject to synchronize its state

with the subject's state.

This kind of interaction is also known as publish-subscribe. The subject is the

publisher of notifications. It sends out these notifications without having to know

who its observers are. Any number of observers can subscribe to receive

notifications.

Applicability

Use the Observer pattern in any of the following situations:

• When an abstraction has two aspects, one dependent on the other.

Encapsulating these aspects in separate objects lets you vary and reuse them

independently.

• When a change to one object requires changing others, and you don't know how

many objects need to be changed.

327

Design Patterns: Elements of Reusable Object-Oriented Software

• When an object should be able to notify other objects without making

assumptions about who these objects are. In other words, you don't want these

objects tightly coupled.

Structure

Participants

• Subject

o knows its observers. Any number of Observer objects may observe a

subject.

o provides an interface for attaching and detaching Observer objects.

• Observer

o defines an updating interface for objects that should be notified of

changes in a subject.

• ConcreteSubject

o stores state of interest to ConcreteObserver objects.

o sends a notification to its observers when its state changes.

• ConcreteObserver

o maintains a reference to a ConcreteSubject object.

o stores state that should stay consistent with the subject's.

o implements the Observer updating interface to keep its state

consistent with the subject's.

Collaborations

328

Design Patterns: Elements of Reusable Object-Oriented Software

• ConcreteSubject notifies its observers whenever a change occurs that could

make its observers' state inconsistent with its own.

• After being informed of a change in the concrete subject, a ConcreteObserver

object may query the subject for information. ConcreteObserver uses this

information to reconcile its state with that of the subject.

The following interaction diagram illustrates the collaborations between a

subject and two observers:

Note how the Observer object that initiates the change request postpones its

update until it gets a notification from the subject. Notify is not always

called by the subject. It can be called by an observer or by another kind of

object entirely. The Implementation section discusses some common variations.

Consequences

The Observer pattern lets you vary subjects and observers independently. You can

reuse subjects without reusing their observers, and vice versa. It lets you add

observers without modifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include the following:

1. Abstract coupling between Subject and Observer. All a subject knows is that

it has a list of observers, each conforming to the simple interface of the

abstract Observer class. The subject doesn't know the concrete class of any

observer. Thus the coupling between subjects and observers is abstract and

minimal.

329

Design Patterns: Elements of Reusable Object-Oriented Software

Because Subject and Observer aren't tightly coupled, they can belong to

different layers of abstraction in a system. A lower-level subject can

communicate and inform a higher-level observer, thereby keeping the system's

layering intact. If Subject and Observer are lumped together, then the

resulting object must either span two layers (and violate the layering), or

it must be forced to live in one layer or the other (which might compromise

the layering abstraction).

2. Support for broadcast communication. Unlike an ordinary request, the

notification that a subject sends needn't specify its receiver. The

notification is broadcast automatically to all interested objects that

subscribed to it. The subject doesn't care how many interested objects exist;

its only responsibility is to notify its observers. This gives you the

freedom to add and remove observers at any time. It's up to the observer to

handle or ignore a notification.

3. Unexpected updates. Because observers have no knowledge of each other's

presence, they can be blind to the ultimate cost of changing the subject. A

seemingly innocuous operation on the subject may cause a cascade of updates

to observers and their dependent objects. Moreover, dependency criteria that

aren't well-defined or maintained usually lead to spurious updates, which can

be hard to track down.

This problem is aggravated by the fact that the simple update protocol

provides no details on what changed in the subject. Without additional

protocol to help observers discover what changed, they maybe forced to work

hard to deduce the changes.

Implementation

Several issues related to the implementation of the dependency mechanism are

discussed in this section.

1. Mapping subjects to their observers. The simplest way for a subject to keep

track of the observers it should notify is to store references to them

explicitly in the subject. However, such storage may be too expensive when

there are many subjects and few observers. One solution is to trade space for

time by using an associative look-up (e.g., a hash table) to maintain the

subject-to-observer mapping. Thus a subject with no observers does not incur

storage overhead. On the other hand, this approach increases the cost of

accessing the observers.

330

Design Patterns: Elements of Reusable Object-Oriented Software

2. Observing more than one subject. It might make sense in some situations for

an observer to depend on more than one subject. For example, a spreadsheet

may depend on more than one data source. It's necessary to extend the Update

interface in such cases to let the observer know which subject is sending the

notification. The subject can simply pass itself as a parameter in the Update

operation, thereby letting the observer know which subject to examine.

3. Who triggers the update? The subject and its observers rely on the

notification mechanism to stay consistent. But what object actually calls

Notify to trigger the update? Here are two options:

a. Have state-setting operations on Subject call Notify after they change

the subject's state. The advantage of this approach is that clients

don't have to remember to call Notify on the subject. The disadvantage

is that several consecutive operations will cause several consecutive

updates, which may be inefficient.

b. Make clients responsible for calling Notify at the right time. The

advantage here is that the client can wait to trigger the update until

after a series of state changes has been made, thereby avoiding

needless intermediate updates. The disadvantage is that clients have

an added responsibility to trigger the update. That makes errors more

likely, since clients might forget to call Notify.

4. Dangling references to deleted subjects. Deleting a subject should not

produce dangling references in its observers. One way to avoid dangling

references is to make the subject notify its observers as it is deleted so

that they can reset their reference to it. In general, simply deleting the

observers is not an option, because other objects may reference them, or they

may be observing other subjects as well.

5. Making sure Subject state is self-consistent before notification. It's

important to make sure Subject state is self-consistent before calling Notify,

because observers query the subject for its current state in the course of

updating their own state.

This self-consistency rule is easy to violate unintentionally when Subject

subclass operations call inherited operations. For example, the notification

in the following code sequence is trigged when the subject is in an

inconsistent state:

void MySubject::Operation (int newValue) {

 BaseClassSubject::Operation(newValue);

 // trigger notification

 _myInstVar += newValue;

 // update subclass state (too late!)

}

331

Design Patterns: Elements of Reusable Object-Oriented Software

You can avoid this pitfall by sending notifications from template methods

(Template Method (360)) in abstract Subject classes. Define a primitive

operation for subclasses to override, and make Notify the last operation in

the template method, which will ensure that the object is self-consistent

when subclasses override Subject operations.

void Text::Cut (TextRange r) {

 ReplaceRange(r); // redefined in subclasses

 Notify();

}

By the way, it's always a good idea to document which Subject operations

trigger notifications.

6. Avoiding observer-specific update protocols: the push and pull models.

Implementations of the Observer pattern often have the subject broadcast

additional information about the change. The subject passes this information

as an argument to Update. The amount of information may vary widely.

At one extreme, which we call the push model, the subjects ends observers

detailed information about the change, whether they want it or not. At the

other extreme is the pull model; the subject sends nothing but the most

minimal notification, and observers ask for details explicitly thereafter.

The pull model emphasizes the subject's ignorance of its observers, whereas

the push model assumes subjects know something about their observers' needs.

The push model might make observers less reusable, because Subject classes

make assumptions about Observer classes that might not always be true. On the

other hand, the pull model may be inefficient, because Observer classes must

ascertain what changed without help from the Subject.

7. Specifying modifications of interest explicitly. You can improve update

efficiency by extending the subject's registration interface to allow

registering observers only for specific events of interest. When such an

event occurs, the subject informs only those observers that have registered

interest in that event. One way to support this uses the notion of aspects

for Subject objects. To register interest in particular events, observers are

attached to their subjects using

void Subject::Attach(Observer*, Aspect& interest);

where interest specifies the event of interest. At notification time, the

subject supplies the changed aspect to its observers as a parameter to the

Update operation. For example:

332

Design Patterns: Elements of Reusable Object-Oriented Software

void Observer::Update(Subject*, Aspect& interest);

8. Encapsulating complex update semantics. When the dependency relationship

between subjects and observers is particularly complex, an object that

maintains these relationships might be required. We call such an object a

ChangeManager. Its purpose is to minimize the work required to make observers

reflect a change in their subject. For example, if an operation involves

changes to several interdependent subjects, you might have to ensure that

their observers are notified only after all the subjects have been modified

to avoid notifying observers more than once.

ChangeManager has three responsibilities:

1. It maps a subject to its observers and provides an interface to

maintain this mapping. This eliminates the need for subjects to

maintain references to their observers and vice versa.

2. It defines a particular update strategy.

3. It updates all dependent observers at the request of a subject.

The following diagram depicts a simple ChangeManager-based implementation of

the Observer pattern. There are two specialized ChangeManagers.

SimpleChangeManager is naive in that it always updates all observers of each

subject. In contrast, DAGChangeManager handles directed-acyclic graphs of

dependencies between subjects and their observers. ADAGChangeManager is

preferable to a SimpleChangeManager when an observer observes more than one

subject. In that case, a change in two or more subjects might cause redundant

updates. The DAGChangeManager ensures the observer receives just one update.

SimpleChangeManager is fine when multiple updates aren't an issue.

333

Design Patterns: Elements of Reusable Object-Oriented Software

ChangeManager is an instance of the Mediator (305) pattern. In general there

is only one ChangeManager, and it is known globally. The Singleton (144)

pattern would be useful here.

9. Combining the Subject and Observer classes. Class libraries written in

languages that lack multiple inheritance (like Smalltalk) generally don't

define separate Subject and Observer classes but combine their interfaces in

one class. That lets you define an object that acts as both a subject and an

observer without multiple inheritance. In Smalltalk, for example, the Subject

and Observer interfaces are defined in the root class Object, making them

available to all classes.

Sample Code

An abstract class defines the Observer interface:

class Subject;

class Observer {

 public:

 virtual ~ Observer();

 virtual void Update(Subject* theChangedSubject) = 0;

 protected:

 Observer();

};

This implementation supports multiple subjects for each observer. The subject passed

to the Update operation lets the observer determine which subject changed when it

observes more than one.

Similarly, an abstract class defines the Subject interface:

class Subject {

 public:

 virtual ~Subject();

 virtual void Attach(Observer*);

 virtual void Detach(Observer*);

 virtual void Notify();

 protected:

 Subject();

 private:

334

Design Patterns: Elements of Reusable Object-Oriented Software

 List<Observer*> *_observers;

};

void Subject::Attach (Observer* o) { _observers->Append(o); }

void Subject::Detach (Observer* o) { _observers->Remove(o); }

void Subject::Notify () {

 ListIterator<Observer*> i(_observers);

 for (i.First(); !i.IsDone(); i.Next()) {

 i.CurrentItem()->Update(this);

 }

}

ClockTimer is a concrete subject for storing and maintaining the time of day. It

notifies its observers every second. ClockTimer provides the interface for

retrieving individual time units such as the hour, minute, and second.

class ClockTimer : public Subject {

 public:

 ClockTimer();

 virtual int GetHour();

 virtual int GetMinute();

 virtual int GetSecond();

 void Tick();

};

The Tick operation gets called by an internal timer at regular intervals to provide

an accurate time base. Tick updates the ClockTimer's internal state and calls Notify

to inform observers of the change:

void ClockTimer::Tick () {

 // update internal time-keeping state

// ...

 Notify();

}

Now we can define a class DigitalClock that displays the time. It inherits its

graphical functionality from a Widget class provided by a user interface toolkit.

The Observer interface is mixed into the DigitalClock interface by inheriting from

Observer.

class DigitalClock: public Widget, public Observer {

 public:

 DigitalClock(ClockTimer*);

 virtual ~DigitalClock();

 virtual void Update(Subject*);

 // overrides Observer operation

335

Design Patterns: Elements of Reusable Object-Oriented Software

 virtual void Draw();

 // overrides Widget operation;

 // defines how to draw the digital clock

 private:

 ClockTimer* _subject;

};

DigitalClock::DigitalClock (ClockTimer* s) {

 _subject = s;

 _subject->Attach(this);

}

DigitalClock:: DigitalClock () {

 _subject->Detach(this);

}

Before the Update operation draws the clock face, it checks to make sure the

notifying subject is the clock's subject:

void DigitalClock::Update (Subject* theChangedSubject) {

 if (theChangedSubject == _subject) {

 Draw();

 }

}

void DigitalClock::Draw () {

// get the new values from the subject

 int hour = _subject->GetHour();

 int minute = _subject->GetMinute();

// etc.

 // draw the digital clock

}

An AnalogClock class can be defined in the same way.

class AnalogClock : public Widget, public Observer {

 public:

 AnalogClock(ClockTimer*);

 virtual void Update(Subject*);

 virtual void Draw();

 // ...

};

The following code creates an AnalogClock and a DigitalClock that always show the

same time:

336

Design Patterns: Elements of Reusable Object-Oriented Software

ClockTimer* timer = new ClockTimer;

AnalogClock* analogClock = new AnalogClock(timer);

DigitalClock* digitalClock = new DigitalClock(timer);

Whenever the timer ticks, the two clocks will be updated and will redisplay

themselves appropriately.

Known Uses

The first and perhaps best-known example of the Observer pattern appears in

Smalltalk Model/View/Controller (MVC), the user interface framework in the

Smalltalk environment [KP88]. MVC's Model class plays the role of Subject, while

View is the base class for observers. Smalltalk, ET++ [WGM88], and the THINK class

library [Sym93b] provide a general dependency mechanism by putting Subject and

Observer interfaces in the parent class for all other classes in the system.

Other user interface toolkits that employ this pattern are InterViews [LVC89], the

AndrewToolkit [P+88], and Unidraw [VL90]. InterViews defines Observer and Observable

(for subjects) classes explicitly. Andrew calls them "view" and "data object,"

respectively. Unidraw splits graphical editor objects into View (for observers) and

Subject parts.

Related Patterns

Mediator (305): By encapsulating complex update semantics, the ChangeManager acts as

mediator between subjects and observers.

Singleton (144): The ChangeManager may use the Singleton pattern to make it unique

and globally accessible.

337

